Detailseite
Projekt Druckansicht

Skalenübergreifendes Smoothed Particle Hydrodynamics Modell für Strömungs- und Transportprozesse in ungesättigten geklüftet-porösen Medien

Antragsteller Dr. Jannes Kordilla
Fachliche Zuordnung Hydrogeologie, Hydrologie, Limnologie, Siedlungswasserwirtschaft, Wasserchemie, Integrierte Wasserressourcen-Bewirtschaftung
Paläontologie
Förderung Förderung von 2016 bis 2020
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 320402845
 
Das Ziel dieses Antrags ist die Entwicklung eines partikel-basierenden skalenübergreifenden Modells zur Simulation von Strömung und Transport in ungesättigten Klüften und angrenzender poröser Matrix.Die Beschreibung von Strömung- und Transportprozessen in ungesättigten geklüftet-porösen Medien stellt immer noch große Herausforderungen an die Wissenschaft, ist jedoch in vielen Anwendungsbereichen von großer Bedeutung wie z.B. im Zusammenhang mit der Quantifizierung der Infiltration durch mächtige ungesättigte Felsmaterialien (Endlagerforschung), mit der Prognose der Grundwasserneubildung durch geklüftete Festgesteine und Aquifervulnerabilität. Strömungs- und Transportprozesse in ungesättigten geklüfteten Grundwasserleitern werden häufig durch ihre heterogene Geometrie und hohen Kontraste in den hydraulischen Eigenschaften dominiert. Strömungen in ungesättigten Klüften sind aufgrund des komplexen Zusammenspiels von Gravitations-, Trägheitseffekten, Kapillarkräften, Oberflächenspannung, Benetzungsdynamiken und der hochvariablen Kluftgeometrie schwer zu prognostizieren.Laborexperimente und numerische Modelle sind häufig eine der wenigen Möglichkeiten die höchst nichtlinearen Strömungsprozesse und den Effekt der Wechselwirkung an komplexen Mehrphasengrenzflächen innerhalb der Klüfte zu erfassen. Insbesondere starke Deformationen der Grenzflächen können mit grid-basierenden Modellen nur unter hohem Aufwand umgesetzt werden. Eine einfachere Methode zur Simulation bieten jedoch partikel-basierte Methoden. Freie Oberflächen und Phasengrenzen bewegen sich hierbei mit den Partikeln, so dass keine komplexen front-tracking Algorithmen notwendig sind.In der Regel sind Kluftsysteme in eine poröse Matrix eingebettet, die in Modellierungsansätzen explizit erfasst werden muss. Die Kluft-Matrix Grenzfläche bildet somit eine wesentliche Schnittstelle zwischen der porösen Matrix, die als Hauptspeicher wirkt, und den Klüften, welche die dominierende hydraulische Verbindung durch die ungesättigte Zone bilden. Um die Verknüpfung dieser beiden Komponenten auf Prozessebene simulieren zu können sind skalenübergreifende Modellansätze notwendig.Im Rahmen des hier beantragten Vorhabens soll ein skalenübergreifendes Smoothed Particle Hydrodynamics Modell entwickelt werden. Die ungesättigte Strömung und der Transport innerhalb der porösen Matrix soll durch klassische Ansätze (Richards) abgebildet und mit den hochdynamischen Strömungs- und Transportprozessen (z.B. adsorbierte Filme, Tropfen, Rinnsäle) auf den Kluftoberflächen gekoppelt werden. Das Modell wird in ein einzigen numerisches Framework eingebunden, so dass Kopplungsmethoden vereinfacht und unterschiedliche Lösungsalgorithmen vermieden werden. Das Modell wird durch numerische Experimente und Laborexperimente validiert und eingesetzt um Effekte komplexer ungesättigter Kluftströmung auf Befeuchtungs- und Transportdynamiken an der Kluft-Matrix-Grenzfläche quantitativ und physikalisch basiert beschreiben zu können.
DFG-Verfahren Sachbeihilfen
Internationaler Bezug USA
Mitverantwortlich Professor Dr. Martin Sauter
Kooperationspartner Dr. Alexandere Tartakovsky
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung