Project Details
Datenfusion multisensoriell ausgeführter Koordinatenmessungen
Applicant
Professor Dr.-Ing. Tino Hausotte, since 10/2011
Subject Area
Measurement Systems
Term
from 2009 to 2014
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 109956736
Die ganzheitliche Prüfung mikrotechnischer Bauteile mit hohen Anforderungen an Messgenauigkeit und -geschwindigkeit, der zunehmende Fokus auf Vielpunktmessungen komplexer Objektmerkmale und Freiformflächen sowie oberflächenstrukturbedingt nicht unisensoriell erfassbare Gestalteigenschaften erfordern den Einsatz von multisensoriellen Koordinatenmessgeräten (KMGs). Sie integrieren mehrere verschiedene Messprinzipien in Form von taktilen, optischen oder bildverarbeitenden Sensoren in einem Messgerät. Die Vorteile der einzelnen Sensoren können kombiniert und messaufgabenspezifisch optimale Messabläufe und genaue Messergebnisse erreicht werden. Zur Nutzung der vielfältigen Vorteile der Zusammenführung multisensoriell erfasster Formelementinformationen, fehlt gegenwärtig ein universeller Ansatz für eine emergente Datenfusion. Die für einzelne Sensoren nachgewiesene ausgezeichnete Messgenauigkeit von Multisensor-KMGs ist bisher nicht für fusionierte Messergebnisse bestätigt. Ziel des Forschungsvorhabens ist die Bereitstellung eines allgemeingültigen (d.h. sensorunabhängigen) Verfahrens zur beständigen sich iterativ selbst optimierenden Datenfusion mittels verteilungsfreier Bayes’scher Statistik für die multisensorielle Koordinatenmesstechnik angewandt auf Bauteile der Mikrosystemtechnik. Dazu werden die in einem Messprozess generierten Beobachtungen eines gemessenen Geometriemerkmals durch zeitdiskrete, nichtlineare, nicht-gauß’sche Differentialgleichungen eines stochastischen Systemmodells mit beliebigen Rauschprozessen beschrieben1. Die Messaufgabe wird hierdurch in ein Schätzproblem für die Modellparameter transformiert, welche auf Basis von Wiederholmessungen ermittelt werden können. Der Einsatz der auch der GUM-konformen Messunsicherheitsermittlung zugrundeliegenden Bayes’schen Schätztheorie lässt erwarten, dass dieses Problem in iterativer, adaptiver Vorgehensweise optimal gelöst werden kann. Nach Abschluss des Forschungsvorhabens wird ein allgemeingültiges, konsistentes, rechnergestütztes Verfahren zur Datenfusion multisensoriell ausgeführter Koordinatenmessungen verfügbar sein, welches für Sensoren unterschiedlicher Wirkprinzipien und Auflösungen das Messergebnis (bestehend aus bestem Schätzwert und Unsicherheit) unter den gegebenen Randbedingungen optimal bestimmt. Das Verfahren erfordert vom Anwender weder das Aufstellen einer Modellgleichung des Messprozesses noch a priori Verteilungsannahmen. Es ermöglicht optimale, momentenbasierte Fusionsstrategien, bei denen Abweichungen sowie die Dynamik des Messprozesses erfasst werden und Vorwissen integriert werden kann.
DFG Programme
Research Grants
Ehemaliger Antragsteller
Professor Dr.-Ing. Albert Weckenmann, until 9/2011