Project Details
Projekt Print View

Internal stochastic resonance in the human sensorimotor system: Noise-enhanced neural control of movement

Subject Area Clinical Neurology; Neurosurgery and Neuroradiology
Term from 2009 to 2014
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 148071916
 
Final Report Year 2014

Final Report Abstract

The long-term goal of this project is to increase human sensorimotor performance using the stochastic resonance phenomenon manifested in non-linear systems, whereby weak signals can be amplified by a particular level of noise. During the grant period we were able to increase the performance in a finger task using this phenomenon. We succeeded in demonstrating for first time improvement in force control by the index finger by the application of stochastic resonance. Moreover, we showed for first time neural correlates of the performance improved by stochastic resonance, as the improvement was related to an increase in local and long-range synchronization, reflected in the stronger cortical motor spectral power and in the higher corticomuscular coherence, respectively. We also showed that the most appropriate Gaussian noise was the broad-bandwidth 0–300 Hz, which improved motor performance during both stationary and transitory phases of the sensorimotor task. In addition, the participants reported that this noise had the highest degree of pleasantness. Thus, our investigation also revealed that the glabrous skin can forward pleasant sensations. Our findings had an immediate clinical application. The vibrotactile noise (Gaussian noise 3-35 Hz) applied on the index finger of eight patients with enhanced physiological tremor performing a visuomotor task induced tremor reduction and improved performance. These findings are relevant for the development of novel therapeutic approaches, such as the development of haptic gloves for motor rehabilitation.

Publications

  • (2011) Corticospinal beta-range coherence is highly dependent on the pre-stationary motor state. J Neurosci. 2011 Jun 1; 31(22):8037-45
    Omlor W, Patino L, Mendez-Balbuena I, Schulte-Mönting J, Kristeva R
  • (2011) Impact of weekly dance class on the functional mobility and on the quality of life of individuals with Parkinson´s disease. Front Aging Neurosci. 3:14
    Heiberger L, Maurer C, Amtage F, Mendez-Balbuena I, Schulte-Mönting J, Hepp-Reymond M-C, Kristeva R
    (See online at https://doi.org/10.3389/fnagi.2011.00014)
  • (2012) Corticomuscular coherence reflects interindividual differences in the state of the corticomuscular network during low-level static and dynamic forces. Cereb Cortex. 22(3):628-38
    Mendez-Balbuena I, Huethe F, Schulte-Mönting J, Leonhart R, Manjarrez E, Kristeva R
    (See online at https://doi.org/10.1093/cercor/bhr147)
  • (2012) Improved sensorimotor performance via stochastic resonance. J Neurosci. 32(36):12612-8
    Mendez-Balbuena I, Manjarrez E, Schulte-Mönting J, Huethe F, Tapia JA, Hepp-Reymond MC, Kristeva R
    (See online at https://doi.org/10.1523/JNEUROSCI.0680-12.2012)
  • (2013) Reticular activating system of a central pattern generator: premovement electrical potentials. Physiol Rep. 1(5):e00129
    Tapia JA, Trejo A, Linares P, Alva JM, Kristeva R, Manjarrez E
    (See online at https://doi.org/10.1002/phy2.129)
  • (2013) The strength of the corticospinal coherence depends on the predictability of modulated isometric forces. J Neurophysiol. 109(6):1579-88
    Mendez-Balbuena I., Naranjo J.R., Wang X., Andrykiewicz A., Huethe F., Schulte-Mönting J, Hepp-Reymond M.-C, Kristeva R
    (See online at https://doi.org/10.1152/jn.00187.2012)
  • (2014) Broad-band Gaussian noise is most effective in improving motor performance and is most pleasant. Front. Hum. Neurosci. 8:22
    Trenado C., Mikulić A., Manjarrez E., Mendez-Balbuena I., Schulte-Mönting J., Huethe F., Hepp-Reymond M.-C., and Kristeva R
    (See online at https://doi.org/10.3389/fnhum.2014.00022)
  • (2014) Enhanced corticomuscular coherence by external stochastic noise. Front. Hum. Neurosci. 8:325
    Trenado C, Mendez-Balbuena I, Manjarrez E, Huethe F, Schulte-Mönting J, Feige B, Hepp-Reymond M-C and Kristeva R
    (See online at https://doi.org/10.3389/fnhum.2014.00325)
  • Suppression of Enhanced Physiological Tremor via Stochastic Noise: Initial Observations. (PlosOne, 9(11): e112782, 2014)
    Trenado C, Amtage F, Huethe F, Schulte-Mönting J, Mendez-Balbuena I, Baker SN, Baker M, Hepp-Reymond M-C, Manjarrez E and Kristeva R
    (See online at https://doi.org/10.1371/journal.pone.0112782)
 
 

Additional Information

Textvergrößerung und Kontrastanpassung