Theory of photo-mechanical properties of azobenzene polymers: light-induced deformation dynamics
Final Report Abstract
To conclude, the orientation approach based on the effective potential (1) provides results in a good agreement with experimental data for photodeformation of azobenzene-containing polymers. In this project we justify this approach by explicit theoretical study and computer simulations of photoisomerization kinetics. Thus, the orientation approach receives now a strong physical background from the first theoretical principles, from computer simulations and from experimental data. The effective orientation potential can be applied to study the reorientation kinetics, deformation and mass transport of a wide spectrum of azo-materials including amorphous, liquidcrystalline and cross-linked polymers, azobenzene-functionalized dendrimers and brushes, azobenzene-decorated plasmonic particles and many others. The established structure−property relationships can be used for designing specific photodeformable materials with target technologically important properties.
Publications
-
Nanoscopic actuators in light-induced deformation of glassy azo-polymers. Proceedings of SPIE 2013, 8901, 89010X: 1 – 8
Saphiannikova, M.; Toshchevikov, V.; Ilnytskyi, J.
-
Structuring of photosensitive material below diffraction limit using far field irradiation. Applied Physics A 2013, 113, 263 – 272
Yadavalli, N. S.; Saphiannikova, M.; Lomadze, N.; Goldenberg, L. M.; Santer, S.
-
Photosensitive response of azobenzene containing films towards pure intensity or polarization interference patterns. Applied Physics Letters 2014, 105, 051601
Yadavalli, N. S.; Saphiannikova, M.; Santer, S.
-
Theory of light-induced deformation of azobenzene elastomers: Effects of the liquid-crystalline interactions and biaxiality. Journal of Physical Chemistry B 2014, 118, 12297 – 12309
Toshchevikov, V.; Saphiannikova, M.
-
Light-induced deformation of liquid crystalline polymer networks containing azobenzene chromophores. Proceedings of SPIE 2015, 9565, 956504: 1 – 8
Toshchevikov, V.; Petrova, T.; Saphiannikova, M.
-
Light-induced deformation of polymer networks containing azobenzene chromophores and liquid crystalline mesogens. Soft Matter 2015, 11, 3412 – 3423
Petrova, T.; Toshchevikov, V.; Saphiannikova, M.
-
Optical deformations of azobenzene polymers: Orientation approach vs. photofluidization concept. Journal of the Society for Information Display 2015, 23, 146 – 153
Saphiannikova, M.; Toshchevikov, V.
-
Reorientation dynamics of chromophores in photosensitive polymers by means of coarse-grained modeling. ChemPhysChem 2015, 16, 3180 – 3189
Ilnytskyi, J.; Saphiannikova, M.
-
Photocontrollable Self-Assembly of Azobenzene-Decorated Nanoparticles in Bulk: Computer Simulation Study. Macromolecules 2016, 49, 9272 – 9282
Ilnytskyi, J.; Slyusarchuk, A.; Saphiannikova, M.
-
Theory and computer simulation of photo-induced deformations in liquid crystal azobenzene polymers. Proceedings of SPIE 2016, 9940, 99400C: 1 – 9
Saphiannikova, M.; Toshchevikov, V.; Petrova, T.; Ilnytskyi, J.
-
Kinetics of light-induced ordering and deformation in LC azobenzene-containing materials. Soft Matter 2017
Toshchevikov, V.; Petrova, T.; Saphiannikova, M.
-
Photoisomerization Kinetics and Mechanical Stress in Azobenzene-Containing Materials. J. Phys. Chem. Lett. 2017, 8, 1094 – 1098
Toshchevikov, V.; Ilnytskyi, J.; Saphiannikova, M.