Project Details
Projekt Print View

RNA-protein-protein interactions of plant RNA editing factors

Applicant Professor Dr. Stefan Binder, since 3/2017
Subject Area Plant Genetics and Genomics
Term from 2010 to 2021
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 171396008
 
Final Report Year 2020

Final Report Abstract

We have made progress in the identification and characterization of protein-protein interactions between various PPR-type RNA editing factors and MORF proteins with the support of funding through the present DFG project. RNA editing in plant organelles alters specific Cytidines to Uridines in mRNA, tRNA and rRNA. Among several types of RNA editing factors, PLS-type PPR proteins and MORF proteins are the two major key players for RNA editing in organelles of flowering plants. PPR-type RNA editing factors consist of a N-terminal PPR domain, which interacts with RNA in a sequence specific manner and a C-terminal E domain or E-DYW domain. The C-terminal DYW domain most likely has the enzymatic activity for the C to U conversion. MORF proteins are essential for more than 50 editing sites, in contrast to PPR proteins, which are specifically necessary for one or few sites. To understand the relevance of these two types of factors, several approaches to investigate protein-protein interactions have been developed. Among the various tested methods, we employed two relatively robust systems for routine protein-protein interaction analyses, Y2H and in vitro CoIP with multiple tags. The two procedures could be applied to almost all of the tested PPR-type editing and MORF proteins. MORF proteins showed specific and strong homo- and heteromer interactions but did not directly interact with RNA. Furthermore, we demonstrated that MORF proteins associate with PPR elements as well as E domains in the PPR-type editing factors. Generally, the affinity of MORF proteins to E domains of PPR proteins was stronger than to PPR elements. This observation suggests that the E domain-MORF interactions, which have not been included in the previous co-crystallization analysis, is particularly important for the RNA editing function. Since expression of full-length PPR or MORF proteins has been very difficult, we expressed fragments of MORF and PPR proteins for the functional investigation of each domain. MORF fragments containing conserved MORF domains were successfully expressed and their 3D structures were determined. This result also supported the strong and specific dimerization of MORF proteins as observed in Y2H and CoIP results and presented a strong hint that dimerization of MORF is a requirement for their function in plant organellar RNA editing.

Publications

 
 

Additional Information

Textvergrößerung und Kontrastanpassung