Project Details
Verlässliche Abschätzung von CH4-Bilanzen für Ökosysteme auf der Basis der Extrapolation von Punktmessungen unter Benutzung von Vegetationsmustern und weiteren Umweltparametern
Applicant
Dr. Gerald Jurasinski
Subject Area
Physical Geography
Term
from 2010 to 2014
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 177406452
Gas fluxes and matter balances of ecosystems are of crucial importance for the evaluation of the climate impact of land use under predicted climate change. Closed chamber (CC) and eddy covariance (EC) measurements are the two most widely used methods to assess greenhouse gas (GHG) emissions from ecosystems. CC measurements exhibit a considerable spatial and temporal variability caused by the phenological development (temporal variability) and by the spatial variability of the vegetative cover and their associated micro-organism communities. In the planned project the vegetation composition of a degraded, rewetted, brackish fen shall be used - together with continuous maps of relevant environmental parameters - as a proxy to extrapolate CC measurements of CH4 flux rates to obtain reliable CH4 emission estimates for the ecosystem/habitat scale. The vegetation assessment is carried out in a regular equidistant grid. The relationship between CH4 emissions and vegetation composition and further environmental parameters is modeled under the consideration of spatial effects with regression kriging. Our results will help to obtain better, more exact, and thus, more reliable CH4 balances by upscaling of point measurements (CC) to the ecosystem scale whilst allowing to attribute the emitted CH4 to plant community characteristics.
DFG Programme
Research Grants
Major Instrumentation
Gas Analyzer
Instrumentation Group
1520 Meßgeräte für Gase (O2, CO2)
Participating Person
Professor Dr. Stephan Glatzel