Project Details
Projekt Print View

Topologie, Geometrie und Analysis dreidimensionaler Fraktale

Subject Area Mathematics
Term from 2010 to 2016
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 181145837
 
Final Report Year 2017

Final Report Abstract

Das Projekt untersuchte die Geometrie von fraktalen Mengen und Maßen, bei denen die Gestalt kleiner Teile sich durch eine Rekursionsvorschrift aus den größeren ergibt. Man möchte auch wissen, ob solch eine Selbstähnlichkeitseigenschaft die Analysis der Mengen vereinfacht. Wenn die Rekursion durch einen endlichen Graphen gegeben.ist, spricht man von Fraktalen endlichen Typs. Für diese Klasse von Fraktalen im n-dimensionalen Raum wurden Schnitte mit Hyperebenen ebenfalls durch Graphen beschrieben. Dadurch lasst sich die Dimension reduzieren. Eine einfache Klasse fraktaler Maße, die man noch nicht richtig versteht, sind die Bernoulli-Faltungen. Für diese wurde ein neuer Zugang entwickelt, der den Zusammenhang mit eindimensionalen dynamischen Systemen und die Bedeutung der Parameter mit endlichem Typ deutlich macht. Zur Analysis wurde ein Zugang verfolgt, der das Spektrum des Hutchinson-Operators und Eigenfunktionen des dualen Transfer-Operators bestimmt. Daraus ergibt sich die Möglichkeit, fraktale Maße in bestimmten Fällen durch Polynome anzunähern. Ein anderes Ergebnis ist eine selbstähnliche Parkettierung der Ebene mit fraktalen Rändern und stetigem Fourier-Spektrum. Neben geometrischer Grundlagenforschung wurde versucht, über zufällige Fraktale und stochastische Prozesse eine Brücke zu schlagen zur praktischen Auswertung von großen Zeitreihendaten. Dabei wurde ein „fraktaler“ Parameter gefunden, der sich besonders gut auf EEGs (Messungen von Hirnströmen) anwenden lasst. Bei Schlaf-EEGs bestimmt dieser Parameter auf sehr einfache Weise die Struktur der Schlafstadien. In dieser Richtung wird weiter gearbeitet.

Publications

 
 

Additional Information

Textvergrößerung und Kontrastanpassung