Detailseite
Projekt Druckansicht

Multiresolution numerical methods for the integral equation theory of solute-solvent interactions in molecular liquids

Fachliche Zuordnung Theoretische Chemie: Elektronenstruktur, Dynamik, Simulation
Förderung Förderung von 2010 bis 2014
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 181654620
 
The integral equation theory of molecular liquids has been proven to be a powerful tool for the calculation of both structural and thermodynamical properties of molecular systems in fluids. However, even for the simplest case of a monoatomic solute immersed in a molecular liquid the theory requires a non-trivial numerical solution of a system of integral equations of the Ornstein-Zernike type. The complexity of solution dramatically increases with the increasing number of interacting molecular sites of the solute and the model liquid. That is why the theory is still far from being 'tool of the trade' for modelling condensed molecular systems, mainly, because of the lack of efficient algorithms and numerical libraries available. The main objective of the proposal is to develop an efficient computational tool for the integral equation theory of solute-solvent interactions in molecular liquids using the modern methods of computational mathematics such as multiresolution wavelet approximation and multi-grid methods for nonlinear equations. We plan to deliver a collection of numerical libraries which can be used for a wide area of applications of the theory from simple monoatomic solutes to biomolecules and supramolecular assemblies in aqueous solutions.
DFG-Verfahren Sachbeihilfen
Internationaler Bezug Großbritannien
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung