Project Details
Projekt Print View

Transport Theory of Cosmic Rays with application to the acceleration of charged particles at interplanetary shock waves

Subject Area Astrophysics and Astronomy
Term from 2010 to 2012
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 184408987
 
The main aim of this proposal is the application of transport theories onto diffusive shock acceleration. Especially interplanetary shocks will be covered, e.g. CME – driven shocks, which build up owing to coronal mass ejections in the solar wind. Therewith it is possible to describe the energy spectrum of solar cosmic rays or SEP (Solar Energetic Particle) – Events. The process of diffusive shock acceleration can be understood as follows: Charged Particles gain energy while they are scattered back and forth across a shock front. On the one hand, this energy gain depends upon the parameters that characterize the shock, which is studied by shock models. The shock models developed at the University of Huntsville, Alabama, describe for instance CME – driven shocks realistically. Therefore it will be the aim of this proposal to combine these shock models with the transport theories and to calculate the maximum energy of the charged particles. On the other hand, the energy gain depends on the form of the diffusion coefficients. Furthermore, it will be the aim of this proposal to develop transport theories to describe the particle transport in astrophysical plasmas more realistically. Particularly, therefore magnetized plasmas will be investigated in which a magnetic background field is superposed by stochastic magnetic fields. In such plasmas the particle transport can be assumed as diffusive and is characterized by diffusion coefficients. Furthermore, shock models will be developed in this proposal. By comparing shock simulations with real shocks the shock parameters will be determined, which are necessary to describe diffusive shock acceleration.
DFG Programme Research Fellowships
International Connection USA
 
 

Additional Information

Textvergrößerung und Kontrastanpassung