Project Details
Projekt Print View

Isomorphism and Similarity of Graphs

Subject Area Theoretical Computer Science
Term from 2010 to 2018
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 188403235
 
Final Report Year 2018

Final Report Abstract

Das Graphisomorphieproblem (kurz GI) ist einer der wenigen verbliebenen natürlichen Kandidaten für ein NP-Problem, das weder in P liegt, noch NP-vollständig ist. Im Rahmen dieses Projektes haben wir neue Algorithmen für Einschränkungen von GI auf bestimmte Graphklassen entwickelt. So konnten wir das Isomorphieproblem für k-Bäume, Intervallgraphen und bestimmte Kreisbogengraphen als L-vollständig klassifizieren. Für gefärbte Hypergraphen haben wir einen FPT-Algorithmus entwickelt, wobei die maximale Farbklassengröße als Parameter fungiert. Für den klassischen Farbverfeinerungsalgorithmus (auch als 1-dimensionaler Weisfeiler-Lehman-Algorithmus bekannt), der einen wichtigen Baustein der in der Praxis eingesetzten Isomorphiealgorithmen bildet, haben wir untersucht, für welche Graphen dieser Algorithmus das Isomorphieproblem korrekt entscheidet. Wir konnten zeigen, dass diese Frage in Polynomialzeit entscheidbar ist. Um den Farbverfeinerungsalgorithmus für allgemeinere Graphklassen nutzbar zu machen, wird er häufig in Kombination mit der Individualisierung einzelner Knoten angewandt. Da der Rechenaufwand mit der Anzahl der individualisierten Knoten stark zunimmt, wird eine möglichst kleine Zahl von Individualisierungen angestrebt. Wir konnten zeigen, dass eine Minimierung der Individualisierungen bei Graphen mit Farbklassengröße höchstens 3 effizient möglich ist (sogar in Logspace), ab Farbklassengröße 4 jedoch W[P]-hart wird. Einen weiteren Schwerpunkt unserer Ergebnisse bildet die Ähnlichkeit von Graphen. Für den Fall, dass zwei Hypergraphen isomorph sind und sich nur durch wenige Knotennamen unterscheiden, geben wir einen FPT-Algorithmus an, wobei die Anzahl der umbenannten Knoten sowie wahlweise die Hyperkantengröße oder die maximale Farbklassengröße Parameter sind. Außerdem haben wir den Fall untersucht, dass die Eingabegraphen nicht isomorph sind und ihre Kanten durch eine Knotenpermutation möglichst weitgehend in Übereinstimmung gebracht werden sollen. Wir geben einen Approximationsalgorithmus an, der in Quasipolymonialzeit den optimalen Anteil der Übereinstimmungen bis auf einen beliebig wählbaren konstanten Faktor bestimmt.

Publications

 
 

Additional Information

Textvergrößerung und Kontrastanpassung