Project Details
Projekt Print View

Permanent sterile Oberflächen durch Kombination von antimikrobiellen und Biobelag verhindernden Oberflächenstrukturen

Subject Area Preparatory and Physical Chemistry of Polymers
Term from 2011 to 2017
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 189968166
 
Final Report Year 2018

Final Report Abstract

Summary of Achievements: We developed two synthetic platforms to make surface-attached polymer networks with precisely tunable properties. By systematically varying charge density and hydrophobicity, we obtained highly active antimicrobial coatings that were compatible with human cells. We systematically characterized the biological and physical properties of these coatings and showed that the antimicrobial activity increases with decreasing acid constant; that cell compatibility increases with increasing swellability. These results led to an important modification in the currently accepted mechanism for antimicrobial activity on surfaces. We developed bifunctional surfaces coating made from protein-repellent poly(zwitterions) that were grafted onto our antimicrobial polymer networks. We could show that these dual-functional coatings were protein resistant and simultaneously active against E. coli bacteria. They are thus promising candidates to make antimicrobial materials that can also prevent biofilm formation. We found the first simultaneously antimicrobial, protein-repellent and cell-compatible poly(zwitterion). Due to the excellent performance of our materials, we started translational research projects. We filed four patents, developed a model for a coated urinary catheter, and coated “real life“ wound dressings with our polymers. We just started to validate the PZI technology for medical applications in a BMBF-funded validation project. We obtained proof-of-concept for self-regenerating antimicrobial surfaces. These consist of a multi-stack of alternating degradable and antimicrobial layers. Like a reptile shedding its skin, the top antimicrobial layer is shed when the degradable layer underneath decomposes. The thus emerging antimicrobial layer from underneath was fully antimicrobially active. This idea and proof-of-concept won us an ERC starting grant. We started to explore new chemistries to make new bioactive monomers and polymers, including poly(norbornene)-based antimicrobial polymers with intended break points in the main chain; antimicrobial polymers based on itaconic acid, a monomer from natural resources; and new biodegradable polymers. „Antimikrobielle Schicht soll Krankenhausinfektionen eindämmen": BioPro, 27.11.2017 „Nicht nur Schlangen häuten sich“. Badische Zeitung, 26.02.2016 „Inspiriert von der Natur - Am Freiburger Institut FIT geht es um smarte Materialien“, Badische Zeitung, 26.02.2016 „Rühren, warten, hoffen“: Südwestpresse, 18. September 2015 „Sich häutende Oberflächen“: chemie.de, 2.12.2014 „Immune Oberfläche“: ChemiePlus, Ausgabe 03/2013, S. 50 „Bakterienkiller mit zwei Gesichtem - Freiburger Forscher entwickeln Alternativen zu Antibiotika“, Deutschlandradio 21.06.2011

Publications

 
 

Additional Information

Textvergrößerung und Kontrastanpassung