Detailseite
Projekt Druckansicht

Graphene-based Nanotechnology

Fachliche Zuordnung Elektronische Halbleiter, Bauelemente und Schaltungen, Integrierte Systeme, Sensorik, Theoretische Elektrotechnik
Mikrosysteme
Förderung Förderung von 2012 bis 2017
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 213117131
 
Erstellungsjahr 2018

Zusammenfassung der Projektergebnisse

The project enabled research on device and system integration of the two-dimensional (2D) material graphene and, in the later part of the project, related 2D materials. Process integration is the fundamental prerequisite for industrial uptake of 2D materials, and it will be the subject of an industry driven research project starting in 2019. We explored the potential for high-speed transistors for analog applications. While graphenebased analog circuits with very high performance are not yet competitive compared to the state of the art, graphene technology allows co-integration of RF functionality on top of silicon chips and – rather uniquely – circuits with reasonably high performance on flexible substrates. Optoelectronic devices were investigated and the potential for co-integration with silicon or even silicon photonics is very high. We demonstrated photodiodes that outperform silicon counterparts in terms of responsivity, quantum efficiency and spectral range. The latter may allow infrared photodetection. Graphene integrated into silicon waveguides may lead to high bandwidth optoelectronic conversion or modulation for high-speed datacom at current telecom wavelengths and beyond. Graphene and 2D nanoelectromechanical sensors were also studied. We demonstrated the feasibility of micrometer-scale 2D membranes with high yield and showed superior sensitivity compared to the state of the art. The research was initially planned to focus on graphene. While this was the case, there was also research into a new material, platinum diselenide. Together with colaborators, we found high piezoresistive gauge factors of pressure and strain sensors as well as fairly high photon absorption in the infrared range. In summary, we were able to demonstrate and assess a range of potential device applications for graphene and 2D materials. All directions of research have been supported through additional funding schemes (for PhD students and PostDocs in my group), and continue to be supported at higher technology readiness levels now and in the future. Several articles were published on the activities in general media outlets: • https://www.derwesten.de/staedte/nachrichten-aus-siegen-kreuztal-netphen-hilchenbach-und-freudenberg/professor-dr-lemme-erforscht-das-graphen-an-der-uni-siegen-id7290141.html • http://www.chemieundmore.com/research/1446,331206/Prof.-Dr.-Max-C.-Lemme/Revolutionaerer-Werkstoff.html • https://www.aachener-nachrichten.de/nrw-region/rwth-professor-max-christian-lemme-forscht-am-wundermaterial-graphen_aid-24398183 • https://www.focus.de/regional/aachen/aachen-rwth-und-amo-gmbh-sind-gastgeber-des-flagship-treffens-mit-150-experten-aus-ganz-europa_id_7978345.html

Projektbezogene Publikationen (Auswahl)

  • “A Graphene-based Hot Electron Transistor”, Nano Letters, 13(4):1435-1439, 2013
    S. Vaziri, G. Lupina, C. Henkel, A.D. Smith, M. Östling, J. Dabrowski, G. Lippert, W. Mehr, M.C. Lemme
    (Siehe online unter https://doi.org/10.1021/nl304305x)
  • “Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes”, Nano Letters, 13(7):3237- 3242, 2013
    A.D. Smith, F. Niklaus, A. Paussa, S. Vaziri, A.C. Fischer, M. Sterner, F. Forsberg, A. Delin, D. Esseni, P. Palestri, M. Östling, M.C. Lemme
    (Siehe online unter https://doi.org/10.1021/nl401352k)
  • “Two-Dimensional Materials for Electronic Applications”. MRS Bulletin, 39(8), 711-718, 2014
    M.C. Lemme, L.-J. Li, T. Palacios, F. Schwierz
    (Siehe online unter https://doi.org/10.1557/mrs.2014.138)
  • “Resistive Graphene Humidity Sensors with Rapid and Direct Electrical Readout”, Nanoscale, 7:19099-19109, 2015
    A.D. Smith, K. Elgammal, F. Niklaus, A. Delin, S. Vaziri, A.C. Fischer, F. Forsberg, M. Råsander, L. Bergqvist, S. Schröder, M. Östling, M.C. Lemme
    (Siehe online unter https://doi.org/10.1039/c5nr06038a)
  • „Optimizing the optical and electrical properties of graphene ink thin films by laser-annealing“, 2D Materials, 2(1): 011003, 2015
    S. Khandan Del, R. Bornemann, A. Bablich, H. Schäfer-Eberwein, J. Li, T. Kowald, M. Östling, P. Haring Bolívar, Max C Lemme
    (Siehe online unter https://doi.org/10.1088/2053-1583/2/1/011003)
  • “Self-organized Growth of Graphene Nanomesh with Increased Gas Sensitivity“, Nanoscale, 8: 15490-15496, 2016
    M. Koenig, G. Ruhl, J.-M. Batke, M.C. Lemme
    (Siehe online unter https://doi.org/10.1039/c6nr03954e)
  • “High Photocurrent in Gated Graphene−Silicon Hybrid Photodiodes”, ACS Photonics, 4(6): 1506–1514, 2017
    S. Riazimehr, S. Kataria, R. Bornemann, P. Haring Bolívar, F. Javier Garcia Ruiz, O. Engström, A. Godoy, M.C. Lemme
    (Siehe online unter https://doi.org/10.1021/acsphotonics.7b00285)
  • “Noninvasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization”, Nano Letters, 17(3): 1504–1511, 2017
    S. Wagner, T. Dieing, A. Centeno, A. Zurutuza, A.D. Smith, M. Östling, S. Kataria, M.C. Lemme
    (Siehe online unter https://doi.org/10.1021/acs.nanolett.6b04546)
  • “Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films”, Nano Letters, 18(6): 3738−3745, 2018
    S. Wagner, C. Yim, N. McEvoy, S. Kataria, V. Yokaribas, A. Kuc, S. Pindl, C.-P. Fritzen, T. Heine, G.S. Duesberg, M.C. Lemme
    (Siehe online unter https://doi.org/10.1021/acs.nanolett.8b00928)
  • “Wide Spectral Photoresponse of Layered Platinum Diselenide-Based Photodiodes”, Nano Letters, 18(3): 1794–1800, 2018
    C. Yim, N. McEvoy, S. Riazimehr, D.S. Schneider, F. Gity, S. Monaghan, P.K. Hurley, M.C. Lemme, G.S. Duesberg
    (Siehe online unter https://doi.org/10.1021/acs.nanolett.7b05000)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung