Detailseite
Projekt Druckansicht

Kollektive Bewegung von Model-Mikroorganismen im Poiseuillefluss

Fachliche Zuordnung Statistische Physik, Nichtlineare Dynamik, Komplexe Systeme, Weiche und fluide Materie, Biologische Physik
Förderung Förderung von 2012 bis 2016
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 214525933
 
Erstellungsjahr 2017

Zusammenfassung der Projektergebnisse

In this project we studied the dynamics of microswimmers such as bacteria, algae or sperm in the presence of fluid flow and confinement, as well as their collective behavior. We first analysed numerically and analytically the motion of a swimmer in a microchannel Poiseuille flow and showed that it either shows upstream oriented swinging or tumbling motion. In 2D this motion can be mapped to the motion of a mathematical pendulum, where the upstreamoriented swinging motion corresponds to the back-and-forth oscillations of the pendulum, and tumbling to the turning-over motion of the pendulum. We further showed that experimental results for the pathogen African trypanosome can be well described by our theory, which has also been used by other experimentalists. We studied the collective behavior of spherical microswimmers in a quasi-2D geometry and showed that hydrodynamic flow fields determine the phase behavior of interacting swimmers in confinement. Our results have been highlighted as an Editor’s Suggestion and featured by the TU Berlin, pro-physik.de and welt-der-physik.de. Finally, we considered the collision of microswimmers with solid surfaces. We showed that the time a swimmer spends at the surface is governed by noise and hydrodynamic swimmer-wall interactions. Interestingly, the escape of very persistent swimmers can be mapped to the escape of a particle from a potential minimum over a potential barrier. http://www.pro-physik.de/details/news/6120431/Schwimmstil bestimmt kollektive Bewegung.html http://www.weltderphysik.de/gebiet/fluide/news/2014/schwimmtyp-bestimmt-kollektive-bewegung

Projektbezogene Publikationen (Auswahl)

  • Flow loading induces oscillatory trajectories in a bloodstream parasite, Biophys. J. 103, 1162 (2012)
    S. Uppaluri, N. Heddergott, E. Stellamanns, S. Herminghaus, A. Zöttl, H. Stark, M. Engstler, and T. Pfohl
    (Siehe online unter https://doi.org/10.1016/j.bpj.2012.08.020)
  • Nonlinear dynamics of a microswimmer in Poiseuille flow, Phys. Rev. Lett. 108, 218104 (2012)
    A. Zöttl and H. Stark
    (Siehe online unter https://doi.org/10.1103/PhysRevLett.108.218104)
  • Periodic and quasiperiodic motion of an elongated microswimmer in Poiseuille flow, Eur. Phys. J. E 36, 1 (2013)
    A. Zöttl and H. Stark
    (Siehe online unter https://doi.org/10.1140/epje/i2013-13004-5)
  • Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement, Phys. Rev. Lett. 112, 118101 (2014)
    A. Zöttl and H. Stark
    (Siehe online unter https://doi.org/10.1103/PhysRevLett.112.118101)
  • Hydrodynamics of microswimmers in confinement and in Poiseuille flow, Dissertation, Technische Universität Berlin (2014)
    A. Zöttl
  • Detention times of microswimmers close to surfaces: influence of hydrodynamic interactions and noise, Phys. Rev. Lett. 115, 038101 (2015)
    K. Schaar, A. Zöttl and H. Stark
    (Siehe online unter https://doi.org/10.1103/PhysRevLett.115.038101)
  • Topical Review: Emergent behavior in active colloids, J. Phys.: Condens. Matter 28, 253001 (2016)
    A. Zöttl and H. Stark
    (Siehe online unter https://doi.org/10.1088/0953-8984/28/25/253001)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung