Detailseite
Projekt Druckansicht

Die Synthese und Funktion von ZC3H11 bei der Hitze-Schock Antwort in Trypanosoma brucei

Fachliche Zuordnung Parasitologie und Biologie der Erreger tropischer Infektionskrankheiten
Zellbiologie
Förderung Förderung von 2012 bis 2019
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 218732757
 
Erstellungsjahr 2019

Zusammenfassung der Projektergebnisse

We had two main questions: A. How is expression of ZC3H11 regulated in procyclic forms? How is ZC3H11 mRNA translation repressed at 27*C? How is ZC3H11 mRNA translation enhanced at 39*C? How is ZC3H11 proteolysis controlled? B. How does ZC3H11 act during the procyclic heat shock response? Is the mechanism the same as in bloodstream forms at 37°C (MKT1, PBP1, LSM12)? If not, which other interactions are required? For (A), we mapped the regulatory element in great detail. We found that phosphorylation (probably by casein kinase 1.2) influences ZC3H11 degradation, which is reduced by proteasome inhibitors. Various different attempts to identify proteins required for ZC3H11 regulation were, however, unsuccessful. For (B) we took advantage of a new method and showed that mRNAs that are bound by ZC3H11 are preferentially excluded from translationally inactive RNA-protein granules that form after heat shock. Studies of proteins that activate expression in the tethering assay revealed an additional component of the MKT1-PBP1-LSM12 complex (XAC1) and a second homologue of Mkt1, MKT1L.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung