Artificial three-dimensional biotops with electroactive bacteria for highly efficient microbial fuel cells by use of metal/polymer fiber hybrid structures
Polymer Materials
Final Report Abstract
In this project we: gained fundamental insides into the enhancement of extracellular electron transfer processes in electroactive biofilms by microbial copper sulphide formation; transferred this bio-inorganic hybrid structure concept towards the development of inexpensive, high-performance electrode materials based on CuS modified graphite; gained systematic insights into the impact of micro- and macrostructural surface elements of biofilm electrodes on the formation and performance of anodic, electrochemically active biofilms; developed a model for the description and development of optimal geometries of 3D flowthrough biofilm electrodes; developed flexible highly electroconductive composite nonwovens by wet-laid process; probed AgNW containing composite nonwovens for MFC; achieved wet-laid composite nonwovens with functional microbes.
Publications
-
Polymer nanofibre composite nonwovens with metal-like electrical conductivity. npj Flexible Electronics 2 (2018)
Steffen Reich, Matthias Burgard, Markus Langner, Shaohua Jiang, Xueqin Wang, Seema Agarwal, Bin Ding, Jianyong Yu & Andreas Greiner
-
Scratching the surface – How decisive are microscopic surface structures on growth and performance of electrochemically active bacteria? Frontiers in Energy Research 7 (2019) 18
Christopher Moß, Sunil A. Patil, Uwe Schröder
-
Breathable and Flexible Polymer Membranes with Mechanoresponsive Electric Resistance. Advanced Functional Materials 30 (2020) Article number 1907555
Gao, Q., Kopera, B.A.F., Zhu, J., Liao, X., Gao, C., Retsch, M., Agarwal, S., Greiner, A.
-
Copper-bottomed: electrochemically active bacteria exploit conductive sulphide networks for enhanced electrogeneity. Energy & Environmental Science 13 (2020) 3102-3109
Laura Beuth, Catharina Philine Pfeiffer, Uwe Schröder
-
Optimal Geometric Parameters for 3D Electrodes in Bioelectrochemical Systems: A Systematic Approach. ChemSusChem 13 (2020) 5119-5129
Christopher Moß, Niklas Jarmatz, Janina Heinze, Stephan Scholl, Uwe Schröder
-
Studying the impact of wall shear stress on the development and performance of electrochemically active biofilms. ChemPlusChem 85 (2020) 2298-2307
Christopher Moß, Niklas Jarmatz, Dave Hartig, Lukas Schnöing, Stephan Scholl, Uwe Schröder
-
The limits of three-dimensionality - Systematic assessment of effective anode macrostructure dimensions for mixed culture electroactive biofilms. ChemSusChem 13 (2020) 582-589
Christopher Moß, Andreas Behrens, Uwe Schröder