Project Details
Projekt Print View

Reeb-Dynamik und Holomorphe Kurven

Subject Area Mathematics
Term from 2012 to 2017
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 225906543
 
Final Report Year 2017

Final Report Abstract

Zentrale Frage des Projektes war die Weinstein-Vermutung: Jedes Reeb-Vektorfeld auf einer geschlossenen Kontaktmannigfaltigkeit hat eine periodische Lösung. Im Rahmen dieses Projektes wurde diese Vermutung in zahlreichen Fällen bewiesen, jeweils unter geeigneten topologischen Annahmen an die zugrundeliegende Mannigfaltigkeit. Ein leicht zu formulierendes Beispiel sind Kontaktmannigfaltigkeiten, die sich als nichttriviale verbundene Summe von zwei Kontaktmannigfaltigkeiten schreiben lassen, d.h. Summen, bei denen keiner der Summanden eine Sphäre ist. In diesem Zusammenhang wurden eine Reihe von topologischen Ergebnissen erzielt, beispielsweise zu symplektischen Kobordismen zwischen symplektischen Sphärenbündeln und zu dynamischen Charakterisierungen des Balles. Die größte Überraschung des Projektes war die Entdeckung von Reeb-Fallen in Dimension größer als oder gleich 5. Hier handelt es sich um Reeb-Flüsse, bei denen eine Bahn von einer nicht-periodischen invarianten Menge eingefangen wird, ohne daß an anderer Stelle periodische Reeb-Bahnen erzeugt werden. Dieses Phänomen ist in Dimension 3 ausgeschlossen und war auch in höheren Dimensionen nicht erwartet worden.

Publications

 
 

Additional Information

Textvergrößerung und Kontrastanpassung