Dual-Phasen-Stähle - Von Mikro- zu Makro-Eigenschaften (EXASTEEL-2)

Antragsteller Professor Dr.-Ing. Daniel Balzani; Professor Dr. Axel Klawonn; Professor Dr. Oliver Rheinbach; Professor Dr.-Ing. Jörg Schröder; Professor Dr. Gerhard Wellein
Fachliche Zuordnung Mathematik
Mechanik
Softwaretechnik und Programmiersprachen
Förderung Förderung von 2012 bis 2021
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 230723766
 

Projektergebnisse

Zusammenfassung der Projektergebnisse

We present a numerical two-scale simulation approach of the Nakajima test for dual-phase steel using the software package FE2TI, a highly scalable implementation of the well known homogenization method FE2. We consider the incorporation of contact constraints using the penalty method as well as the sample sheet geometries and adequate boundary conditions. Additional software features such as a simple load step strategy and prediction of an initial value by linear extrapolation are introduced. The macroscopic material behavior of dual-phase steel strongly depends on its microstructure and has to be incorporated for an accurate solution. For a reasonable computational effort, the concept of statistically similar representative volume elements (SSRVEs) is presented. Furthermore, the highly scalable nonlinear domain decomposition methods NL-FETI-DP and nonlinear BDDC are introduced and weak scaling results are shown. These methods can be used, e.g., for the solution of the microscopic problems. Additionally, some remarks on sparse direct solvers are given, especially to PARDISO. Finally, we come up with a computationally derived Forming Limit Curve (FLC).

DFG-Verfahren Schwerpunktprogramme
Teilprojekt zu SPP 1648:  Software für Exascale Computing
Internationaler Bezug Schweiz
Partnerorganisation Schweizerischer Nationalfonds (SNF)
Mitverantwortlich Professor Dr. Olaf Schenk