Project Details
Projekt Print View

H-atom detachment photochemistry of (hetero)aromatic molecules: ab initio quantum dynamics studies

Subject Area Theoretical Chemistry: Electronic Structure, Dynamics, Simulation
Term from 2014 to 2018
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 248983919
 
Final Report Year 2018

Final Report Abstract

We have performed computational studies of molecular photodissociation reactions which proceed via conical intersections. The analysis is based on numerically exact quantum dynamical wave-packet calculations for appropriately constructed multi-state multi-mode model Hamiltonians. In addition to rigorous dynamics simulations for these models, computationally efficient approximate methods were developed and their performance was illustrated in comparison with the exact calculations. The effect of an intermediate conical intersection on the vibrational state distributions of the photofragments was investigated in detail for the example of the ozone molecule. A substantial part of the work of this project was the construction of a full-dimensional (24D) three-sheeted diabatic potential-energy surface for pyrrole. Reduced-dimensional (6D, 11D, 15D) quantum dynamics calculations were performed to simulate the absorption profile of pyrrole and to calculate vibrational state distributions of the pyrrolyl radical. These are the first quantum dynamical calculations of vibrationally resolved photofragment distributions of an aromatic molecule. The calculated H-atom kinetic-energy spectra were compared with experimental data and the results were interpreted in terms of the topography of the PE surfaces. The photodissociation dynamics of the pyridinyl radical was studied in the framework of an ab initio based three-state three-mode model. While this model has limitations due to the restricted number of electronic states and vibrational modes, this work represents the first theoretical investigation of the photodissociation dynamics of a hypervalent aromatic radical.

Publications

 
 

Additional Information

Textvergrößerung und Kontrastanpassung