Project Details
Projekt Print View

Scalable on-body pathloss models based on surface wave propagation for wireless body area networks

Subject Area Electronic Semiconductors, Components and Circuits, Integrated Systems, Sensor Technology, Theoretical Electrical Engineering
Term from 2013 to 2017
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 252499296
 
Final Report Year 2017

Final Report Abstract

Funkapplikationen im und am Körper werden zunehmend in unterschiedlichen Lebensbereichen eingesetzt. Die fortschreitende Miniaturisierung solcher Geräte führt häufig dazu, dass der Nutzer selbst zum prägenden Teil der Funkanwendungen wird. Die primär der Körperkontur folgenden Übertragungsstrecken sind hierbei nicht durch herkömmliche Freiraumfunkfelddämpfungsmodelle nachzubilden, da der dominante Ausbreitungsmechanismus auf Oberflächenwellen zurückzuführen ist. Ziel des Forschungsprojekts ist die Definition an die Wellenausbreitung am Körper adaptierter Antennenparameter und die Entwicklung skalierbarer physikalisch motivierter Kanalmodelle. Die theoretischen Grundlagen zur Wellenausbreitung entlang ebener verlustbehafteter Grenzschichten werden durch das klassische Sommerfeldproblem eingeführt. Diesbezüglich wird eine Lösung für den quasi-stationären Funkfeldbereich aufgezeigt und zur Diskussion grundlegender elektromagnetischer Ausbreitungsphänomene im Frequenzbereich zwischen 400 MHz und 60 GHz herangezogen. Basierend hierauf wird eine Methode zum Antennendeembedding vorgestellt, welche die Abschätzung des durchschnittlich zu erwartenden Antennenfernfeldes ermöglicht. Des Weiteren wird das körpergebundene Fernfeld in eine TM und eine TE Komponente zerlegt, um seine Wirkung auf zwei äquivalente elektrische Dipole abzubilden. Dieser Ansatz ermöglicht die Definition von On-Body Antennenparametern, u.a. Direktivität und Antennenwirkfläche, welche zur systematischen Klassifikation körpergetragener Antennen herangezogen werden. Während dieser Ansatz hinreichend zur Beschreibung direkter Ausbreitungspfade verwendet werden kann, ist ihre Verwendung bei gekrümmten Ausbreitungspfaden durch das zugrunde gelegte ebene Modell beschränkt. Diese Limitation wird durch Einführung eines zylindrischen Pathlossmodells umgangen, indem das ebene Modell zur Modellierung des quasistationären Feldbereichs verwendet wird und das Zylindermodel weiter entfernte Distanzen beschreibt. Die Modellentwicklung wird hierbei komplementär zum TM/TE-Ansatz des ebenen Modells gehalten. Die gesamte Theorie wird durch numerische Ganzkörpersimulationen und Messungen in einer Antennenmesskammer verifiziert. Zusammenfassend konnte im Rahmen dieses Projekts gezeigt werden, dass selbst die komplexe Wellenausbreitung am menschlichen Körper durch physikalisch motivierte Kanalmodelle auf Basis von Raum- und Oberflächenwellen mit einer für Pahlossmodelle guten Genauigkeit nachgebildet werden kann. Die abgeleiteten, an das Ausbreitungsszenario angepassten Antennenparameter eignen sich deutlich besser zur Charakterisierung von Antennen für diese Funksysteme als die klassischen Freiraumparameter, die üblicherweise verwendet werden.

Publications

 
 

Additional Information

Textvergrößerung und Kontrastanpassung