Project Details
Projekt Print View

GRK 2064:  Water use efficiency and drought stress responses: From Arabidopsis to Barley

Subject Area Agriculture, Forestry and Veterinary Medicine
Term from 2015 to 2020
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 252965955
 
Final Report Year 2022

Final Report Abstract

The focus of the Research Training Group 2064 (RTG2064) was the characterization of factors contributing to drought tolerance in the model plant Arabidopsis and in the crop plant barley. This research is of crucial importance for developing crops adopted to adverse stress conditions caused by the climate change. The research on drought is timely and of high relevance to today’s societal agenda. In the course of the RTG2604 projects, different physiological and biochemical processes were studied with high relevance for adaptation to water deficit conditions. These processes included improved water uptake from the soil (differential covering of the root with a suberin layer), the accumulation of solutes which protect the plant cell against osmotic stress (proline), and the protection of plant organs against excessive water loss (cuticular waxes). Furthermore, the effects of drought on the early and late development of reproductive organs was studied in barley. Another focus of the RTG2064 project was how to control levels of reactive oxygen species (ROS) during drought. Thus, different fluorescent biosensors were employed to study the regulation of ROS-related processes during drought by fluorescence microscopy on a cellular level. An important aspect of the RTG2064 included the transfer of knowledge obtained with Arabidopsis to the crop barley, e.g. as demonstrated by the induction of compatible solute production or the synthesis of cuticular waxes. The RTG2064 was of crucial importance to strengthen the plant science community at the University of Bonn with regard to cooperative research and coordinated training of doctoral students. The common efforts of the consortium improved the visibility of plant sciences on campus and on a national and international level. The interactions and collaborations between the research groups of the Science Faculty and the Agricultural Faculty resulted in original research projects which would have not been possible without the RTG2064. Research results have been published in high-level international journals. The guest lecture programme allowed inviting international scientists to the University of Bonn which helped to increase visibility and fostered further collaborative interactions. The doctoral students were fully involved in this programme and thus had opportunities to seek employment opportunities and to reflect academic careers. The doctoral training programme served as an example to organize Ph.D. projects by other research groups in plant sciences and related fields in Bonn. The RTG2064 also strengthened the interactions of plant scientists between research groups of the University of Bonn, the Max Planck Institute of Plant Breeding Research in Cologne and the University of Düsseldorf. Finally, the RTG2064 was instrumental for advancing the careers of young scientists, as the Ph.D. students of the RTG2064 continued their careers e.g. with postdoctoral projects in high-level research groups, as research group leaders, or as scientists in companies. In addition, three of the young principle investigators of the RTG2064 obtained professorships at Universities in Münster and Kaiserslautern, and the University of Applied Science in Osnabrück.

Publications

  • (2016) D-Lactate dehydrogenase links methylglyoxal degradation to the electron transport chain through cytochrome c. Plant Physiol. 172, 901-912
    Welchen E, Schmitz J, Fuchs P, García L, Wagner S, Schmidt J, Schertl P, Braun HP, Schwarzländer M, Gonzalez DH, Maurino VG
    (See online at https://doi.org/10.1104/pp.16.01174)
  • (2017) ATP sensing in living plant cells reveals tissue gradients and stress dynamics of energy physiology. eLIFE. e26770
    De Col V, Fuchs P, Nietzel T, Elsässer M, Voon CP, Candeo A, Seeliger I, Fricker MD, Grefen C, Møller IM, Bassi A, Lim BL, Zancani M, Meyer AJ, Costa A, Wagner S, Schwarzländer M
    (See online at https://doi.org/10.7554/eLife.26770)
  • (2017) Floral transitions in wheat and barley: interactions between photoperiod, abiotic stresses, and nutrient status. J. Exp. Bot. 68, 1399–1410
    Gol L, Tomé F, von Korff M
    (See online at https://doi.org/10.1093/jxb/erx055)
  • (2017) Glutathione peroxidase-like enzymes cover five distinct cell compartments and membrane surfaces in Arabidopsis thaliana. Plant Cell Environ. 40, 1281-1295
    Attacha S, Solbach D, Bela K, Moseler A, Wagner S, Schwarzländer M, Aller I, Müller SJ, Meyer AJ
    (See online at https://doi.org/10.1111/pce.12919)
  • (2017) Physiological characterization of a plant mitochondrial calcium uniporter in vitro and in vivo. Plant Physiol. 173, 1355-1370
    TeardoE, Carraretto L, Wagner S, Formentina E, Behera S, De Bortoli S, Larosa V, Fuchs P, Lo Schiavo F, Raffaello A, Rizzuto R, Costa A, Schwarzländer M, Szabò I
    (See online at https://doi.org/10.1104/pp.16.01359)
  • (2017) Plant mitochondrial membranes: adding structure and new functions to respiratory physiology. Curr. Opin. Plant Biol. 40, 147-157
    Schwarzländer M, Fuchs P
    (See online at https://doi.org/10.1016/j.pbi.2017.09.002)
  • (2017) The composite water and solute transport of barley (Hordeumvulgare) roots: effect of suberized barriers. Ann. Bot.119, 629-643
    Ranathunge K, Kim YX, Wassmann F, Kreszies T, Zeisler V, Schreiber L
    (See online at https://doi.org/10.1093/aob/mcw252)
  • (2018) An ancestral allele of pyrroline-5-carboxylate synthase1 promotes proline accumulation and drought adaptation in cultivated barley. Plant Physiol. 178: 771-782
    Muzammil S, Shrestha A, Dadshani S, Pillen K, Siddique S, Léon J, Naz AA
    (See online at https://doi.org/10.1104/pp.18.00169)
  • (2018) ATP compartmentation in plastids and cytosol of Arabidopsis thaliana revealed by fluorescent protein sensing. Proc. Natl. Acad. Sci. USA 115, E10778–E10787
    Voon CP, Guan X, Sun Y, Sahu A, Chan MN, Gardeström P, Wagner S, Fuchs P, Nietzel T, Versaw WK, Schwarzländer M, Lim BL
    (See online at https://doi.org/10.1073/pnas.1711497115)
  • (2018) Night-time transpiration in barley (Hordeumvulgare) facilitates respiratory carbon dioxide release and is regulated during salt stress. Ann. Bot. 122, 569–582
    Even M, Sabo M, Meng D, Kreszies T, Schreiber L, Fricke W
    (See online at https://doi.org/10.1093/aob/mcy084)
  • (2018) Suberised transport barriers in Arabidopsis, barley and rice roots: From the model plant to crop species. J. Plant Physiol. 227, 75-83
    Kreszies T, Schreiber L, Ranathunge K
    (See online at https://doi.org/10.1016/j.jplph.2018.02.002)
  • (2019) Low-glutathione mutants are impaired in growth but do not show an increased sensitivity to moderate water deficit. PLoS One. e0220589
    Bangash SAK, Müller-Schüssele SJ, Solbach D, Jansen M, Fiorani F,Schwarzländer M, Kopriva S, Meyer AJ
    (See online at https://doi.org/10.1371/journal.pone.0220589)
  • (2019) Multiparametric real-time sensing of cytosolic physiology links hypoxia responses to mitochondrial electron transport. New Phytol. 224, 1668-1684
    Wagner S, Steinbeck J, Fuchs P, Lichtenauer S, Elsässer M, Schippers JHM, Nietzel T, Ruberti C, Van Aken O, Meyer AJ, Van Dongen JT, Schmidt RR, Schwarzländer M
    (See online at https://doi.org/10.1111/nph.16093)
  • (2019) Osmotic stress enhances suberisation of apoplastic barriers in barley seminal roots: analysis of chemical, transcriptomic and physiological responses. New Phytol. 221, 180-194
    Kreszies T, Shellakkutti N, Osthoff A, Yu P, Baldauf JA, Zeisler-Diehl VV, Ranathunge K, Hochholdinger F, Schreiber L
    (See online at https://doi.org/10.1111/nph.15351)
  • (2019) Osmotic stress enhances suberisation of apoplastic barriers in barley seminal roots: analysis of chemical, transcriptomic and physiological responses. New Phytol. 221, 180-194
    Kreszies T, Shellakkutti N, Osthoff A, Yu P, Baldauf JA, Zeisler-Diehl VV, Ranathunge K, Hochholdinger F, Schreiber L
    (See online at https://doi.org/10.1111/nph.15351)
  • (2019) Osmotic stress enhances suberisation of apoplastic barriers in barley seminal roots: analysis of chemical, transcriptomic and physiological responses. New Phytol. 221, 180-194
    Kreszies T, Shellakkutti N, Osthoff A, Yu P, Baldauf JA, Zeisler-Diehl VV, Ranathunge K, Hochholdinger F, Schreiber L
    (See online at https://doi.org/10.1111/nph.15351)
  • (2019) Surface wax esters contribute to drought tolerance in Arabidopsis. Plant J. 98, 727-744
    Patwari P, Salewski V, Gutbrod K, Kreszies T, Dresen-Scholz B, Peisker H, Steiner U, Meyer AJ, Schreiber L, Dörmann P
    (See online at https://doi.org/10.1111/tpj.14269)
  • (2019) Surface wax esters contribute to drought tolerance in Arabidopsis. Plant J. 98, 727-744
    Patwari P, Salewski V, Gutbrod K, Kreszies T, Dresen-Scholz B, Peisker H, Steiner U, Meyer AJ, Schreiber L, Dörmann P
    (See online at https://doi.org/10.1111/tpj.14269)
  • (2019) The fluorescent protein sensor roGFP2-Orp1 monitors in vivo H2O2 and thiol redox integration and elucidates intracellular H2O2 dynamics at elicitor-induced oxidative burst in Arabidopsis. New Phytol. 221, 1649-1664
    Nietzel T, Elsässer M, Ruberti C, Steinbeck MJ, Ugalde JM, Fuchs P, Wagner S, Ostermann L, Moseler A, Lemke P, Fricker MD, Müller-Schüssele SJ, Moerschbacher BM, Costa A, Meyer AJ, Schwarzländer M
    (See online at https://doi.org/10.1111/nph.15550)
  • (2019) Transcriptomic reprogramming of barley seminal roots by combined water deficit and salt stress. BMC Genom. 20, 325
    Osthoff A, Donàdalle Rose P, Baldauf JA, Piepho HP, Hochholdinger F
    (See online at https://doi.org/10.1186/s12864-019-5634-0)
  • (2019) Two bifunctional inositol pyrophosphate kinases/phosphatases control plant phosphate homeostasis. eLife 2019;8:e43582
    Zhu J, Lau K, Puschmann R, Harmel RK, Zhang Y, Pries V, Gaugler P, Broger L, Dutta AK, Jessen HJ, Schaaf G, Fernie AR, Hothorn LA, Fiedler D, Hothorn
    (See online at https://doi.org/10.7554/elife.43582)
  • (2020) Extraction and quantification of soluble, radiolabeled inositol polyphosphates from different plant species using SAX-HPLC. J. Vis. Exp.
    Gaugler P, Gaugler V, Kamleitner M, Schaaf G
    (See online at https://doi.org/10.3791/61495)
  • (2020) Seminal roots of wild and cultivated barley differentially respond to osmotic stress in gene expression, suberization, and hydraulic conductivity. Plant Cell Environm. 43, 344-357
    Kreszies T, Eggels S, Kreszies V, Osthoff A, Shellakkutti N, Baldauf JA, Zeisler‐Diehl VV, Hochholdinger F, Ranathunge K, Schreiber L
    (See online at https://doi.org/10.1111/pce.13675)
  • (2020) Seminal roots of wild and cultivated barley differentially respond to osmotic stress in gene expression, suberization, and hydraulic conductivity. Plant Cell Environm. 43, 344-357
    Kreszies T, Eggels S, Kreszies V, Osthoff A, Shellakkutti N, Baldauf JA, Zeisler‐Diehl VV, Hochholdinger F, Ranathunge K, Schreiber L
    (See online at https://doi.org/10.1111/pce.13675)
  • (2020) Seminal roots of wild and cultivated barley differentially respond to osmotic stress in gene expression, suberization, and hydraulic conductivity. Plant Cell Environm. 43, 344-357
    Kreszies T, Eggels S, Kreszies V, Osthoff A, Shellakkutti N, Baldauf JA, Zeisler‐Diehl VV, Hochholdinger F, Ranathunge K, Schreiber L
    (See online at https://doi.org/10.1111/pce.13675)
  • (2020) Seminal roots of wild and cultivated barley differentially respond to osmotic stress in gene expression, suberization, and hydraulic conductivity. Plant Cell Environm. 43, 344-357
    Kreszies T, Eggels S, Kreszies V, Osthoff A, Shellakkutti N, Baldauf JA, Zeisler‐Diehl VV, Hochholdinger F, Ranathunge K, Schreiber L
    (See online at https://doi.org/10.1111/pce.13675)
  • (2020) Suberized transport barriers in plant roots: the effect of silicon. J. Exp. Bot. 71, 6799-6806
    Kreszies T, Kreszies V, Ly F, Thangamani PD, Shellakkutti N, Schreiber L
    (See online at https://doi.org/10.1093/jxb/eraa203)
  • (2020) Suberized transport barriers in plant roots: the effect of silicon. J. Exp. Bot. 71, 6799-6806
    Kreszies T, Kreszies V, Ly F, Thangamani PD, Shellakkutti N, Schreiber L
    (See online at https://doi.org/10.1093/jxb/eraa203)
  • (2021) Abscisic acid binding transcription factors modulate proline biosynthesis and drought adaptation in Arabidopsis thaliana. J. Plant Physiol. 261, 153414
    Shrestha A, Cudjoe DK, Siddique S, Léon J, Naz AA
    (See online at https://doi.org/10.1016/j.jplph.2021.153414)
  • (2021) Chloroplast-derived photooxidative stress causes changes in H2O2 and EGSH in other subcellular compartments. Plant Physiol. 186, 125-141
    Ugalde JM, Fuchs P, Nietzel T, Cutolo EA, Homagk M, Vothknecht UC, Holuigue L, Schwarzländer M, Müller-Schüssele SJ, Meyer AJ
    (See online at https://doi.org/10.1093/plphys/kiaa095)
  • (2021) ITPK1 is an InsP6/ADP phosphotransferase that controls phosphate signaling in Arabidopsis. Mol. Plant, 14, 1864-1880
    Riemer E, Qiu D, Laha D, Harmel RK, Gaugler P, Gaugler V, Frei M, Hajirezaei MR, Laha NP, Krusenbaum L, Schneider R, Saiardi A, Fiedler D, Jessen HJ, Schaaf G, Giehl RFH
    (See online at https://doi.org/10.1016/j.molp.2021.07.011)
  • (2021) Organellar calcium signaling in plants: An update. Biochim. Biophys. Acta, 1868, 118948
    Pirayesh N, Giridhar M, Ben Khedher A, Vothknecht UC, Chigri F
    (See online at https://doi.org/10.1016/j.bbamcr.2021.118948)
  • (2021) Plasticity in plastid redox networks: evolution of glutathione-dependent redox cascades and glutathionylation sites. BMC Plant Biol. 21, 1-20
    Müller-Schüssele SJ, Bohle FA, Rossi J, Trost P, Meyer AJ, Zaffagnini M
    (See online at https://doi.org/10.1186/s12870-021-03087-2)
  • (2021). Ppd-H1 integrates drought stress signals to control spike development and flowering time in barley. J. Exp. Bot. 72, 122–136
    Gol L, Harraldsson EB, von Korff M
    (See online at https://doi.org/10.1093/jxb/eraa261)
  • (2021). Ppd-H1 integrates drought stress signals to control spike development and flowering time in barley. J. Exp. Bot. 72, 122–136
    Gol L, Harraldsson EB, von Korff M
    (See online at https://doi.org/10.1093/jxb/eraa261)
  • (2022) Reductive stress triggers ANAC017-mediated retrograde signaling to safeguard the endoplasmic reticulum by boosting mitochondrial respiratory capacity. Plant Cell
    Fuchs P, Bohle FA, Lichtenauer S, Ugalde MJ, Feitosa Araujo E, Mansuroglu B, Ruberti C, Wagner S, Müller-Schüssele SJ, Meyer AJ, Schwarzländer M
    (See online at https://doi.org/10.1093/plcell/koac017)
  • (2022) Reductive stress triggers ANAC017-mediated retrograde signaling to safeguard the endoplasmic reticulum by boosting mitochondrial respiratory capacity. Plant Cell
    Fuchs P, Bohle FA, Lichtenauer S, Ugalde MJ, Feitosa Araujo E, Mansuroglu B, Ruberti C, Wagner S, Müller-Schüssele SJ, Meyer AJ, Schwarzländer M
    (See online at https://doi.org/10.1093/plcell/koac017)
 
 

Additional Information

Textvergrößerung und Kontrastanpassung