Project Details
Dynamical behaviour and ergodic theory of quasiperiodically forced maps, with particular attention to the existence and properties of strange non-chaotic attractors
Applicant
Professor Dr. Tobias Henrik Oertel-Jäger
Subject Area
Mathematics
Term
from 2006 to 2009
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 25618165
Final Report Year
2009
Final Report Abstract
No abstract available
Publications
- Linearisation of conservative toral homeomorphisms. Invent. Math., 176(3):601-616, 2009
T. Jäger
- Rotation numbers for quasiperiodically forced circle maps - Mode-locking vs strict monotonicity. J. Am. Math. Soc. 22:353-362, 2009
K. Bjerklöv and T. Jäger
- Strange non-chaotic attractors in quasiperiodically forced circle maps. Comm. Math. Phys., 289(1):253-289, 2009
T. Jäger
- Strangely dispersed minimal sets in the quasiperiodically forced Arnold circle map. Nonlinearity, 22(4):835-854, 2009
P. Glendinning, T. Jäger, and J. Stark