Project Details
Projekt Print View

Transport processes during cryopreservation of gametes and ovarian tissues

Subject Area Veterinary Medical Science
Term from 2014 to 2024
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 260387574
 
The central aim of the first phase of our project was to correlate subzero membrane phase and permeability properties of sperm with their ability to survive freezing and thawing. In addition, biomolecular stability of freeze-dried sperm and physical properties of glasses for dry preservation have been investigated. We discovered that ice formation triggers a membrane phase transition, which is dependent on the ice nucleation temperature, the cooling rate, and the type of cryoprotective agent that is used. Freezing-induced membrane phase changes were used to investigate the cell membrane permeability to water allowing prediction of optimal cooling rates for cryopreservation. Furthermore, we discovered that membranes become permeable for molecules for which they are normally impermeable during freezing, while the cells survive freezing zu beladen. We found that simply exposing cells to freezing can thus be used to load cells with membrane impermeable lyoprotective agents, such as sucrose or trehalose, which preserves chromatin in freeze-dried sperm even under accelerated aging conditions. Whereas in the first phase of this project water and solute transport processes have been predominantly studied at the cellular and membrane level, in the next phase this will be extended to the tissue level and multiple component solutions. Membrane transport parameters of oocytes for water and cryoprotective agents will be determined from cell volume responses in a microfluidic device. Membrane permeabilization during loading cells with cryoprotective agents will be investigated by studying uptake of membrane-impermeable molecules. It is planned to investigate if sodium ions also pass membranes during freezing and if freezing in reduced sodium increases cryosurvival. Diffusion of protective molecules in ovarian tissues and concomitant dehydration will be investigated to develop a mass transport model, which will allow to correlate distribution of protectants with cryosuriviva. Storage stability of cryopreserved specimens will be investigated by studying molecular mobility and membrane transport processes near the glass transition temperature with the aim to develop formulations allowing cryogenic storage at higher temperatures.
DFG Programme Research Grants
Co-Investigator Dr. Harriette Oldenhof
 
 

Additional Information

Textvergrößerung und Kontrastanpassung