Detailseite
Projekt Druckansicht

Zur Rolle von Lipidtransferproteinen der Ups/PRELI Familie und von Membrankontaktstellen für den Transport von Lipiden in Mitochondrien

Fachliche Zuordnung Biochemie
Förderung Förderung von 2015 bis 2021
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 268448891
 
Erstellungsjahr 2021

Zusammenfassung der Projektergebnisse

Mitochondria serve as metabolic and signaling hubs whose functions must be maintained in steady-state conditions and be adopted to meet cellular metabolic demands. They comprise double-layered biological membranes housing essential protein machineries whose functions depend on their lipid environment in these membranes. Not surprisingly, recent studies increasingly denote the importance of membrane lipid biogenesis in the maintenance and adaptation of mitochondrial activities. However, until recently, it remained obscure how mitochondria exchange lipids and its precursors and communicate with other cellular compartments. In this project, we have analysed intramitochondrial lipid trafficking, structurally characterized lipid transfer proteins involved and examined the role of membrane contact sites facilitated by MICOS complexes. Ups2-Mdm35/PRELID3b-TRIAP1 complexes were identified and structurally characterized as conserved, intramitochondrial lipid transfer proteins for PS, which is converted into PE at the mitochondrial IM. Close contacts between mitochondrial membranes assisted by MICOS were found to enable PE synthesis at OM and PE export to the ER. Fine-tuning of PE level maintains physiochemical properties of the IM including cristae morphogenesis. Moreover, we discovered that PE levels control the activity of the mitochondrial protease YME1L, which broadly reshapes the mitochondrial proteome in hypoxic and starved cells. mTORC1 inhibition initiates a phospholipid signaling cascade which lowers mitochondrial PE and activates YME1L mediated proteolysis. Finally, we found an unexpected link between intramitochondrial lipid biogenesis and cellular stress signaling cascades. Together, our experiments did not only deepen our understanding of intramitochondrial phospholipid transport and biogenesis, but also revealed unexpected links of membrane lipid homeostasis to mitochondrial proteostasis and intracellular signaling.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung