Project Details
Projekt Print View

Quantifying London dispersion effects through novel local correlation techniques

Subject Area Theoretical Chemistry: Molecules, Materials, Surfaces
Term from 2015 to 2021
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 271506004
 
During the first founding period, we developed an energy decomposition scheme within the domain-based local pair natural orbital coupled-cluster (DLPNO-CCSD(T) framework, which allows for a physically sound decomposition of the accurate DLPNO-CCSD(T) energy into additive, chemically meaningful contributions. This method, also called "Local Energy Decomposition" (LED) analysis, can be used for quantifying the elusive London dispersion component of the interaction energy between an arbitrary number of fragments or molecules. Challenging applications of this scheme will be carried out during the second funding period, with the final aim of contributing to the rational control of London dispersion effects on chemical reactivity. These applications will be carried out in collaboration with several experimental groups and include: (i) complex organocatalyzed reactions; (ii) molecular balances for the quantification of London dispersion effects in solution; (iii) the study of the coordination bond in organometallic chemistry. Moreover, further developments of the LED analysis will be carried out during the second funding period. In particular, we will implement in the ORCA code an open-shell version of this scheme that will allow for a tremendous increase on the number of systems that can be studied. In addition, a series of simple yet powerful tools for the spatial analysis of the different components of the LED analysis will be also implemented in ORCA.
DFG Programme Priority Programmes
 
 

Additional Information

Textvergrößerung und Kontrastanpassung