Detailseite
Projekt Druckansicht

Wechselwirkung von interstitiell gelösten Verunreinigungen mit Versetzungsbewegungen in kubisch raumzentrierten Metallen

Antragsteller Dr. Christian Brandl
Fachliche Zuordnung Thermodynamik und Kinetik sowie Eigenschaften der Phasen und Gefüge von Werkstoffen
Mechanische Eigenschaften von metallischen Werkstoffen und ihre mikrostrukturellen Ursachen
Förderung Förderung von 2015 bis 2019
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 271954546
 
Erstellungsjahr 2019

Zusammenfassung der Projektergebnisse

The project investigated the dislocation-mediated plasticity which causes the brittleductile transition in pure Cr and which appears to be related to the role of impurities and their interference with the thermally-activated dislocation mobility. Based on established theories of kink-pair nucleation on screw dislocation, the uniaxial stress formalisms have been reformulated for hardness and subsequently applied to the experimental data. The combination of newly acquired resolution of temperaturedependent hardness and activation volume allowed to identify an impurity induced solute-drag strength contribution superimposed on the temperature-dependent and strain-rate dependent kink-pair nucleation limited strength. Detailed analysis of the kink-pair nucleation limited plasticity regimes allowed for the identification of the line tension model regime and elastic interaction regime at low temperatures (i.e., high hardness) and elevated temperatures (i.e., low hardness), respectively. At even higher temperature, the nanoindentation data did not reveal a measurable strain rate and temperature dependent hardness beyond the experimental scatter and therefore, revealed athermal strength contribution presumably related to athermal strengthening mechanisms (e.g., forest hardening). These presumable athermal Knee hardness is also superimposed on the hardness contribution related to the thermally-activated kink-pair nucleation. Moreover, the project developed an equilibrium molecular dynamics method to determine the mobility of dislocations in the limit of zero stress. The molecular dynamics simulations revealed also two temperatures regimes for even the mobility of edge dislocations. The resulting implications are currently investigated in context of the influence microstructural constrains on the intrinsic mobility of extended dislocation lines.

Projektbezogene Publikationen (Auswahl)

  • Thermally activated dislocation plasticity in body-centered cubic chromium studied by high-temperature nanoindentation, Acta Materialia 140 (2017) 107-115
    I.-C. Choi, C. Brandl, R. Schwaiger
    (Siehe online unter https://doi.org/10.1016/j.actamat.2017.08.026)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung