Detailseite
Projekt Druckansicht

Cytochrom P450-Enzyme im metabolen Netzwerk um Indol-3-Acetonitril bei Arabidopsis: Biologische Funktionen und Protein-Protein-Interaktionen

Fachliche Zuordnung Biochemie und Biophysik der Pflanzen
Genetik und Genomik der Pflanzen
Förderung Förderung von 2015 bis 2020
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 281071237
 
Erstellungsjahr 2020

Zusammenfassung der Projektergebnisse

Characteristic for cruciferous plants is the synthesis of a complex array of defence-related indolic compounds. In Arabidopsis, these include indole-3-carbaldehyde (ICHO) / indole-3-carboxylic acid (ICOOH) derivatives and camalexin. Key enzymes in the biosynthesis of the inducible metabolites are the cytochrome P450 enzymes CYP71A12, CYP71A13 and CYP71B6 and Arabidopsis Aldehyde Oxidase 1 (AAO1). CYP71A12-specific TALE nucleases (TALENs) were introduced into the cyp71a13 background, multiple mutants were generated and their metabolic phenotypes were analysed. Most strikingly, ICOOH and ICHO derivatives synthesized in response to UV exposure were not metabolically related. For AAO1 we suggest two independent biological functions in glucosinolate degradation and in vitamin B6 metabolism. Camalexin is synthesized efficiently without release of reactive intermediates, suggesting channelling of the biosynthetic pathway involving an enzyme complex. By a comprehensive analysis, involving untargeted and targeted coimmunoprecipitation, FRET-FLIM, and the analysis of enzyme characteristics, it was demonstrated that indeed the camalexin-biosynthetic enzymes form a metabolon. The glutathione transferase GSTU4, which is co-expressed with tryptophan- and camalexin-specific enzymes, was physically recruited to the complex. Surprisingly, camalexin concentrations were elevated in knock-out and reduced in GSTU4 overexpressing plants. This shows that GSTU4 is not directly involved in camalexin biosynthesis but rather has a role in a competing mechanism. Extending our genome editing work to other cytochrome P450 genes in Arabidopsis, we have been focusing on an 83 kb-cluster (CYP71B37 to CYP71B16) of the CYP71B-family. Applying CRISPR/Cas9 technology, this large gene cluster was successfully stably deleted from the genome and phenotyping of these plants is in progress. It is proposed that CRISPR/Cas9-based genome editing is a powerful tool to study the unrevealed functions of clusters of redundant genes.

Projektbezogene Publikationen (Auswahl)

  • (2015) TALEN- mediated generation and metabolic analysis of camalexin-deficient cyp71a12 cyp71a13 double knockout lines. Plant Physiology 168: 849-858
    Müller TM, Böttcher C, Morbitzer R, Götz CC, Lehmann J, Lahaye T, Glawischnig E
    (Siehe online unter https://doi.org/10.1104/pp.15.00481)
  • (2019) Dissection of the network of indolic defence compounds in Arabidopsis thaliana by multiple mutant analysis. Phytochemistry, 161:11-20
    Müller T, Böttcher C, Glawischnig E
    (Siehe online unter https://doi.org/10.1016/j.phytochem.2019.01.009)
  • (2019) The formation of a camalexinbiosynthetic metabolon. Plant Cell, Nov;31(11):2697-2710
    Mucha S, Heinzlmeir S, Kriechbaumer V, Strickland B, Kirchhelle C, Choudhary M, Kowalski N, Eichmann R, Hückelhoven R, Grill E, Kuster B, Glawischnig E
    (Siehe online unter https://doi.org/10.1105/tpc.19.00403)
  • (2020) The role of CYP71A12 monooxygenase in pathogentriggered tryptophan metabolism and Arabidopsis immunity. New Phytol. Jan;225(1):400-412
    Pastorczyk M, Kosaka A, Piślewska-Bednarek M, López G, Frerigmann H, Kułak K, Glawischnig E, Molina A, Takano Y, Bednarek P
    (Siehe online unter https://doi.org/10.1111/nph.16118)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung