Project Details
Projekt Print View

Mathematical Modeling and Simulation of Microstructured Magnetic-Shape-Memory Devices

Subject Area Materials Science
Term from 2006 to 2014
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 28321193
 
The macroscopic behavior of magnetic shape memory (MSM) devices is determined by the interplayof phase transformations originating from the atomic scale with mesoscopic structuressuch as lattice defects, impurities, and grain boundaries in polycrystals. Furthermore, materialbehavior can be tuned by technical production of composite materials, layered thin filmdevices, and textures in polycrystals. We aim to understand these effects quantitatively andprovide criteria to guide material production. Therefore, we will model these microstructureson the mesoscale and study them analytically and numerically. A continuum model will beformulated on the basis of elasticity and micromagnetism, homogenization will be applied toeffectively resolve the microstructures, and variational discretization methods will be used forthe numerical simulation. In the first application period we intend to focus on the followingspecific cases:- blocking of the MSM effect in polycrystals, in dependence of the texture, and the impactof defects on the macroscopic behavior of crystals;- avoiding blocking by embedding many small MSM particles in a soft polymer matrix;- microstructures and layered configurations in thin MSM films.
DFG Programme Priority Programmes
Participating Persons Martin Lenz; Professor Dr. Martin Rumpf
 
 

Additional Information

Textvergrößerung und Kontrastanpassung