Project Details
Projekt Print View

SFB 755:  Nanoscale Photonic Imaging

Subject Area Physics
Biology
Chemistry
Mathematics
Term from 2007 to 2019
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 28586557
 
Final Report Year 2019

Final Report Abstract

SFB 755 “Nanoscale Photonic Imaging” has developed and applied high resolution optical methods to visualize structures and dynamics in space and time on the nanometer scale and on timescales extending over many orders of magnitude down to the femtosecond range. The increase in resolution and the combination of nanoscale imaging with spectroscopic information was used to extend our capability to describe nanoscale biomolecular and complex fluid systems, under functionally relevant environmental parameters. Novel methods have been developed to visualize macromolecular trajectories in aqueous solution and in living cells, to reconstruct the native density distribution in cells and tissues, or to trace intermolecular interactions along with forces and chemical compositions well beyond the conventional resolution limits. The research areas covered include optical microscopy beyond the diffraction limit, multidimensional microscopy, spectroscopy with high spatial and temporal resolution, x-ray optics and x-ray imaging, lensless imaging, time dependent x-ray scattering, data reconstruction and inverse optical problems. The intensive interaction of the experimental projects with mathematical projects has created a strong synergistic impact both on the development in optics and on mathematical methods. In addition, computer simulations of biomolecular dynamics have been used to connect photon based experimental data to atomistic models. The following particular advances have been achieved in the SFB 755: the focusing of X-rays on 5 nm, the optimized generation and use of short femtosecond EUV pulses for coherent diffractive imaging, a substantial improvement of the isotropic resolution in the isoSTED method, the reconstruction of the exact distribution and stoichiometry from the nanoscopic image, the imaging of living cells in X-ray dark field contrast, first experiments with novel X-ray laser sources, a new method for serial object reconstruction from single molecule diffraction data with only three photons per diffraction image, new methods and experiments for time-resolved tomography (four-dimensional imaging), as well as the development of virtual three-dimensional histology based on X-ray phase contrast imaging.

Publications

  • Arginine52 controls the photoisomerization process in Photoactive Yellow Protein, J. Am. Chem. Soc., 130(11), 3250-3251, 2008
    Groenhof, G., Schäfer, L. V., Boggio-Paqua, M., Grubmüller, H., and Robb, M. A.
    (See online at https://doi.org/10.1021/ja078024u)
  • High-Transmission Planar X-Ray Waveguides, Phys. Rev. Lett., 100, 184801, 2008
    T. Salditt, S.P. Krüger, C. Fuhse, and C. Bähtz
    (See online at https://doi.org/10.1103/physrevlett.100.184801)
  • Morphological clues to wet granular pile stability, Nat. Mater., 7, 189–193, 2008
    Scheel, M., Seemann, R., Brinkmann, M., DI Michiel, M., Sheppard, A., Breidenbach, B., and Herminghaus, S.
    (See online at https://doi.org/10.1038/nmat2117)
  • Spherical nanosized focal spot unravels the interior of cells, Nat. Methods, 5, 539–544, 2008
    Schmidt, R., Wurm, C. A., Jakobs, S., Engelhardt, J., Egner A., and Hell, S. W.
    (See online at https://doi.org/10.1038/nmeth.1214)
  • Block Copolymer Nanostructures Mapped by Far-Field Optics, Nano Lett., 9(6), 2497–2500, 2009
    Ullal,C. K., Schmidt, R., Hell, S. W., and Egner, A.
    (See online at https://doi.org/10.1021/nl901378e)
  • Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses, Nat. Photonics, 3, 381–387, 2009
    Hell, S.W., Schmidt, R., and Egner, A.
    (See online at https://doi.org/10.1038/nphoton.2009.112)
  • High-resolution probing of cellular force transmission, Phys. Rev. Lett., 102(16), 168102, 2009
    Mizuno, D., Bacabc, R., Tardin, C., Head D., and Schmidt, C. F.
    (See online at https://doi.org/10.1103/physrevlett.102.168102)
  • Iteratively Regularized Gauss-Newton Methods for Nonlinear Inverse Problems with Random Noise, SIAM J. Numer. Anal., 47(3), 1827– 1846, 2009
    Bauer, F., Hohage, T., and Munk, A.
    (See online at https://doi.org/10.1137/080721789)
  • Mitochondrial Cristae Revealed with Focused Light, Nano Lett., 9 (6), 2508–2510, 2009
    Schmidt, R., Wurm, C. A., Punge, A., Egner, A., Jakobs, S., and Hell, S. W.
    (See online at https://doi.org/10.1021/nl901398t)
  • Huygens principle and iterative methods in inverse obstacle scattering, Adv. Comput. Math., 33, 413–429, 2010
    Ivanyshyn, O., Kress, R., and Serranho, P.
    (See online at https://doi.org/10.1007/s10444-009-9135-6)
  • Quantitative biological imaging by ptychographic x-ray diffraction microscopy, PNAS, 107, 529-534, 2010
    Giewekemeyer, K., Thibault, P., Kalbfleisch, S., Beerlink, A., Kewish, C. M., Dierolf, M., Pfeiffer, F., and Salditt, T.
    (See online at https://doi.org/10.1073/pnas.0905846107)
  • A readily retrievable pool of synaptic vesicles, Nat. Neurosci., 14, 833– 839, 2011
    Hua, Y., Sinha, R., Thiel, C. S., Schmidt, R., Hüve, J., Martens, H., Hell, S. W., Egner, A. and Klingauf, J.
    (See online at https://doi.org/10.1038/nn.2838)
  • Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores, Nat. Methods, 8(4), 353-9, 2011
    Aquino, D., Schönle, A., Geisler, C., Middendorff, C. V., Wurm, C. A., Okamura, Y., Lang, T., Hell, S. W. and Egner, A.
    (See online at https://doi.org/10.1038/nmeth.1583)
  • Convergence rates in expectation for Tikhonov-type regularization of inverse problems with Poisson data, Inverse Problems, 28, 104004, 2012
    Werner, F. and Hohage, T.
    (See online at https://doi.org/10.1088/0266-5611/28/10/104004)
  • Drift estimation for single marker switching based imaging schemes, Opt. Express, 20(7), 7274-89, 2012
    Geisler, C., Hotz, T., Schönle, A., Hell, S. W., Munk, A. and Egner, A.
    (See online at https://doi.org/10.1364/oe.20.007274)
  • Intermediate Filaments in Small Configuration Spaces, Phys. Rev. Lett., 108(8), 088101, 2012
    Nöding, B. and Köster, S.
    (See online at https://doi.org/10.1103/physrevlett.108.088101)
  • Local linear convergence of approximate projections onto regularized sets, Nonlinear Anal. Theory, Methods Appl., 75(3), 1531-1546, 2012
    Luke, D. R.
    (See online at https://doi.org/10.1016/j.na.2011.08.027)
  • Polymer Dynamics, Fluorescence Correlation Spectroscopy, and the Limits of Optical Resolution, Phys. Rev. Lett., 108(10), 108101, 2012
    Enderlein, J.
    (See online at https://doi.org/10.1103/physrevlett.108.108101)
  • Shape-constrained regularization by statistical multiresolution for inverse problems: asymptotic analysis, Inverse Problems, 28(6), 065006, 2012
    Frick, K., Marnitz, P. and Munk, A.
    (See online at https://doi.org/10.1088/0266-5611/28/6/065006)
  • Extreme-ultraviolet light generation in plasmonic nanostructures, Nat. Phys., 9, 304-309, 2013
    Sivis, M., Duwe, M., Abel, B. and Ropers, C.
    (See online at https://doi.org/10.1038/nphys2590)
  • Generation and Bistability of a Waveguide Nanoplasma Observed by Enhanced Extreme-Ultraviolet Fluorescence, Phys. Rev. Lett., 111(8), 85001, 2013
    Sivis, M. and Ropers, C.
    (See online at https://doi.org/10.1103/physrevlett.111.085001)
  • Nonconvex notions of regularity and convergence of fundamental algortihms for feasibility problems, SIAM J. OPTIM 23(4), 2397-2419, 2013
    Hesse, R. and Luke, R.
    (See online at https://doi.org/10.1137/120902653)
  • Reconstruction of extended sources for the Helmholtz equation, Inverse Problems, 29(3), 035005, 2013
    Kress, R. and Rundell, W.
    (See online at https://doi.org/10.1088/0266-5611/29/3/035005)
  • Statistical Multiresolution Estimation for Variational Imaging: With an Application in Poisson-Biophotonics, J. Math. Imaging Vis., 46(3), 370-387, 2013
    Frick, K., Marnitz, P. and Munk, A.
    (See online at https://doi.org/10.1007/s10851-012-0368-5)
  • Sub-5 nm hard x-ray point focusing by a combined Kirkpatrick-Baez mirror and multilayer zone plate,. Opt. Express, 21(16), 19311, 2013
    Döring, F., Robisch, A., Eberl, C., Osterhoff, M., Ruhland, A., Liese, T., Schlenkrich, F., Hoffmann, S., Bartels, M., Salditt, T. and Krebs, H. U.
    (See online at https://doi.org/10.1364/oe.21.019311)
  • Fluorescence nanoscopy by polarization modulation and polarization angle narrowing, Nat. Methods, 11(5), 579-84, 2014
    Hafi, N., Grunwald, M., van den Heuvel, L. S., Aspelmeier, T., Chen, J.-H., Zagrebelsky, M., Schütte, O. M., Steinem, C., Korte, M., Munk, A., and Walla, P. J.
    (See online at https://doi.org/10.1038/nmeth.2919)
  • IEEE Transactions on Signal Processing, 62(18), 4868-4881, 2014
    Hesse, R., Luke, D.R., and Neumann, P.
    (See online at https://doi.org/10.1109/TSP.2014.2339801)
  • Phase retrieval for Fresnel measurements using a shearlet sparsity constraint, Inverse Problems, 30, 55005, 2014
    Loock, S. and Plonka, G.
    (See online at https://doi.org/10.1088/0266-5611/30/5/055005)
  • Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells, Nat Commun., 5, 5412, 2014
    Honigmann, A., Mueller, V., Ta, H., Schoenle, A., Sezgin, E., Hell, S. W. and Eggeling, C.
    (See online at https://doi.org/10.1038/ncomms6412)
  • Scanning X-Ray Nanodiffraction on Living Eukaryotic Cells in Microfluidic Environments, Phys. Rev. Lett., 112, 88102, 2014
    Weinhausen, B., Saldanha, O., Wilke, R. N., Dammann, C., Priebe, M., Burghammer, M., Sprung, M. and Köster, S.
    (See online at https://doi.org/10.1103/PhysRevLett.112.088102)
  • Orbital-specific Mapping of the Ligand Exchange Dynamics of Fe(CO)5 in Solution, Nature 520 (7545), 78-81, 201
    Ph. Wernet, et al.
    (See online at https://doi.org/10.1038/nature14296)
  • The Filament Sensor for Near Real-Time Detection of Cytoskeletal Fiber Structures, PLoS ONE, 10(5), e0126346, 2015
    Eltzner, B., Wollnik, C., Gottschlich, C., Huckemann, S., Rehfeldt, F.
    (See online at https://doi.org/10.1371/journal.pone.0126346)
  • X-Ray Holographic Imaging of Hydrated Biological Cells in Solution, Phys. Rev. Lett., 114(4), 48103, 2015
    Bartels, M. Krenkel, M. Haber, J. Wilke R.N., and Salditt, T.
    (See online at https://doi.org/10.1103/physrevlett.114.048103)
  • 4Pi-RESOLFT nanoscopy, Nat Commun., 7, 10504, 2016
    Böhm, U., Hell, S. W. and Schmidt, R.
    (See online at https://doi.org/10.1038/ncomms10504)
  • Controlling molecular transport in minimal emulsions, Nat Commun., 7, 10392, 2016
    Gruner, P., Riechers B., Semin, B., Lim, J., Johnston, A., Short, K., and Baret, J.-C.
    (See online at https://doi.org/10.1038/ncomms10392)
  • Lateral association and elongation of vimentin intermediate filament proteins: A time-resolved light-scattering study, PNAS, 113 (40), 11152-11157, 2016
    Lopez, C. G., Saldanha, O., Huber, K., and Köster, S.
    (See online at https://doi.org/10.1073/pnas.1606372113)
  • Tailored semiconductors for high-harmonic optoelectronics, Science, 357, 303-306, 2017
    Sivis, M., Taucer, M., Vampa, G., Jonston, K., Staudte, A., Naumov, A. Y., Villeneuve, D. M., Ropers, C. and Corkum, P. B.
    (See online at https://doi.org/10.1126/science.aan2395)
  • Locality estimates for Fresnel-wavepropagation and stability of x-ray phase contrast imaging with finite detectors, Inverse Problems, 34, 124004 (38pp), 2018
    Maretzke, S.
    (See online at https://doi.org/10.1088/1361-6420/aae78f)
  • Near-infrared STED nanoscopy with an engineered bacterial phytochrome, Nat Commun., 9, 4762, 2018
    Kamper, M., Ta, H., Jensen, N. A., Hell, S. W. and Jakobs, S.
    (See online at https://doi.org/10.1038/s41467-018-07246-2)
  • Three-dimensional virtual histology of human cerebellum by X-ray phase-contrast tomography, PNAS, 2018
    Töpperwien, M., van der Meer, F., Stadelmann, C. and Salditt, T.
    (See online at https://doi.org/10.1073/pnas.1801678115)
  • Viscoelastic properties of vimentin originate from nonequilibrium conformational changes, Sci. Adv. 4(6), eaat1161, 2018
    Block, J., Witt, H., Candelli, A., Cabanas Danes, J., Peterman, E. J. G., Wuite, G. J. L., Janshoff, A. and Köster, S.
    (See online at https://doi.org/10.1126/sciadv.aat1161)
  • Heterogeneous and rate-dependent streptavidin–biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations, PNAS, 116(14), 6594-6601, 2019
    Rico, F., Russek, A., González, L., Grubmüller, H. and Scheuring
    (See online at https://doi.org/10.1073/pnas.1816909116)
 
 

Additional Information

Textvergrößerung und Kontrastanpassung