Detailseite
Projekt Druckansicht

Ein zweidimensionales ultrakaltes Gas fermionischer polarer LiCs Moleküle

Fachliche Zuordnung Optik, Quantenoptik und Physik der Atome, Moleküle und Plasmen
Förderung Förderung von 2016 bis 2021
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 258183570
 
Erstellungsjahr 2018

Zusammenfassung der Projektergebnisse

During the last two years, several scientific goals have been achieved. We have finalized our study on heteronuclear Efimov scenario and observed multiplet resonance structures in the Li-Cs and Li-Li p-wave Feshbach resonances. An efficient production of Li quantum gases has been realized by implementing the D1 gray molasses cooling and a spatially modulated optical dipole trap. Combining an optimized degenerate Raman sideband cooling with a precise characterization of dipole trapping of Cs provided an excellent starting condition for the further evaporative cooling towards Bose-Einstein condensates at high magnetic fields. We have tested the magneto-association of LiCs Feshbach dimers and a spectroscopy laser was prepared for the investigation of excited molecular structures from this weakly bound state. A high-resolution imaging system for both Li and Cs has been optimized and carefully characterized. For the remaining funding period the remaining goals are going to be addressed. We will realize a Bose-Einstein condensate of Cs as well as a double degenerate Li-Cs mixture at high magnetic fields. A study of the collisional properties of LiCs Feshbach dimers will be performed to investigate the structure of three- and four-body bound states. Using the spectroscopy laser we will address the excited B1 Π state of the LiCs molecule and test a Feshbach optimized photoassociation process. Meanwhile, a laser system for dipolar trapping will be set up to realize quasi-2D trapping for both Li and Cs atoms.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung