Project Details
Projekt Print View

A hybrid stochastic-deterministic model calibration method with application to subsurface CO2 storage in geological formations

Subject Area Hydrogeology, Hydrology, Limnology, Urban Water Management, Water Chemistry, Integrated Water Resources Management
Term from 2015 to 2022
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 288483442
 
Final Report Year 2022

Final Report Abstract

One of the main outcomes of this project is a new method for solving Bayesian inverse problems. It is based on Gaussian process emulators and employs a sequential sampling strategy (=sequential design of computer experiments). The method works best on inverse problems with a low to moderate number of parameters (10 or less). It is specifically designed for problems with computationally expensive model functions in the sense that it tries to solve the inverse problem with as few model evaluations as possible. Thanks to the sequential sampling strategy, our new method proves to be more efficient, considered from point of view of the required iterations/model evaluations, than methods based on space-filling sampling strategies. This has been confirmed in a number of numerical experiments. As part of this project, our method has then been extended by two features that make it even more powerful. First, it implements a novel way of identifying Gaussian process hyperparameters and is therefore especially user-friendly. Second, if a fast approximation of the model function is available, then our method can take this into account and work as a multi-level method. The multi-level variant of the method is typically faster than the corresponding single-level variant. Furthermore, our method has been adapted to solve two other, related problem types: Bayesian model selection and Bayesian optimization. The methods for Bayesian inverse problems and for Bayesian model selection are available in a python package we called bali (Bayesian likelihood estimation). It is written as a toolbox such that it can be applied to new problems easily. The other outcome is the development of another new hybrid method combining the PCE based stochastic method and the indirect deterministic method, as it was planned originally in the proposal. The method could be applied successfully to the model problem for identifying the two parameters, the porosity and the permeability. From the results obtained, we can say that the new method uses advantages of both the methods and the resulting method is more efficient and stable from both the original methods.

Publications

 
 

Additional Information

Textvergrößerung und Kontrastanpassung