Project Details
Projekt Print View

DECOR: Dynamical Effects on Composition and transport Of climate Relevant species, in the extratropical upper troposphere lower and stratosphere region

Subject Area Atmospheric Science
Term from 2016 to 2020
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 316834009
 
Final Report Year 2021

Final Report Abstract

We investigate the distribution of climate relevant trace species at the Arctic and midlatitude tropopause and lower stratosphere with HALO, their chemical and microphysical variability as well as their radiative impact. The data have been compared to chemistry transport models and numerical weather predictions models, helping to improve the representation of transport and chemical processing of theses species in this dynamical region of the atmosphere. We address the following questions: 1.) Ozone chemistry: What is the distribution of climate relevant trace species at the tropopause? How does transport and chemical processing impact the chlorine budget in the lowermost polar stratosphere during the Arctic winter? An unprecedented data set of inorganic chlorine species has been obtained during the POLSTRACC mission with AIMS on HALO. High amounts of active chlorine can be found in the lower polar stratosphere during cold Arctic winters. The observed chlorine partitioning is well represented in CTMs however the comparison with the measurement reveal a high-bias of HCl in the lower stratosphere. 2.) Water vapor: How well can we measure water vapor in the UTLS? How is it represented in NWP models? What mechanism drives transport of tropospheric water vapor into the stratosphere? Water vapor measurements have been compaired by different means of detection principles, winning back a large confidence in the UTLS water vapor measurements. These HALO measurements reveal a wet-bias of ECMWF data at the tropopause, which potential impact of the representation of clouds in these models. Mechanisms that induce transport of water vapor into the stratosphere have been investigated during an orographig mountain wave events. 3.) Arctic Cirrus Clouds: What are the optical properties of polar stratospheric clouds and how do they form? How does the cirrus ice water content at the tropopause feedback on the local radiation budget? Arctic cirrus and polar stratospheric clouds have been observed from HALO with the WALES lidar and the WARAN ice water content measurements. New formation pathways of the PSCs were proposed. Further, the impact of cirrus clouds on the radiation budget were investigated showing a local heating effect that enhances the static stability at the tropopause with feedbacks on STE.

Publications

 
 

Additional Information

Textvergrößerung und Kontrastanpassung