Project Details
Projekt Print View

Development of a multi-physics biofilm model incorporating biofilm mechanical and structural characteristics from multi-dimensional imaging datasets acquired by means of optical coherence tomography

Subject Area Hydrogeology, Hydrology, Limnology, Urban Water Management, Water Chemistry, Integrated Water Resources Management
Term from 2016 to 2021
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 319886260
 
Final Report Year 2020

Final Report Abstract

On the basis of positioning tests, we proved that the cultivation and monitoring platform ensured an accurate and reliable positioning of the OCT scanner and thus an automated and non-invasive imaging of biofilm replicates. Unintentional detachment of the biofilm by external influences could thus be prevented. A replicate analysis illustrated the need for a minimum number of biofilm replicates and a calculation of several biofilm parameters due to high standard deviations in these parameters as well as in comparison with literature. The influence of the Fe2+ addition on the structural biofilm properties was further demonstrated by means of growth experiments as defined in the project proposal. Thereby, a positive effect of Fe2+ on biofilm development was determined, which was expressed by thicker, faster accumulating and more differentiated “mature” biofilms of high biofilm volume. Biofilm development control can thus be realized by addition of Fe2+ to the cultivation medium. ATR infrared spectroscopy (data not shown) as well as gravimetric measurements confirmed an incorporation of 𝛼- and 𝛽-iron oxide-hydroxide (FeOOH). By comprising additional literature, these iron compounds are known to thrive the development and differentiation of biofilms from suspended bacterial cells and stimulate the production of extracellular polymeric substances. Deformation experiments revealed that biofilms behave differently at elevated shear stress levels and that no defined correlation could be associated between material behavior, iron(II) concentration and volumetric flow rate (iron loading) as well as wall shear stress during growth. Merely, an increased compression of the biofilms could be achieved by adding 2.5 mg/L Fe2+ to the cultivation medium. Here, biofilm age and density gradients within the biofilm (z-direction) may have influenced the investigation. Nevertheless, it was demonstrated, that even after high flow rates (shear stresses) applied, biofilms did not detach entirely in all experiments. At that point, several structural and mechanical biofilm parameters were evaluated to characterize the biofilm stability. Lastly, the project proofed the need for an interdisciplinary approach when it comes to the estimation of correct material properties of biofilms.

Publications

 
 

Additional Information

Textvergrößerung und Kontrastanpassung