Detailseite
Projekt Druckansicht

Adaptives Lernen von schwachem Feedback in interaktiver Vorlesungsübersetzung

Fachliche Zuordnung Bild- und Sprachverarbeitung, Computergraphik und Visualisierung, Human Computer Interaction, Ubiquitous und Wearable Computing
Allgemeine und Vergleichende Sprachwissenschaft, Experimentelle Linguistik, Typologie, Außereuropäische Sprachen
Förderung Förderung von 2017 bis 2022
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 326904228
 
Erstellungsjahr 2022

Zusammenfassung der Projektergebnisse

Auto-adaptive learning from weak feedback in the area of machine translation describes a mutually beneficial learning cycle where a human user is supported by a machine translation system, and where human feedback is used directly as weak signal for machine learning. The main advantage of this framework is that weak feedback for machine translations is available more easily and in larger quantities from humans than professional translations for supervised learing. The project investigated algorithms for interactive machine learning from weak feedback, and showed successful applications to speech recognition and translation. The algorithms presented in the project have been successfully applied in academic and commercial settings. Publications describing the work of the project appeared in the most prestigious conferences in the fields of speech and natural language processing. Tangible outcomes of the project are widely used datasets for speech recognition and speech translation, and open-source toolkits for neural machine translation.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung