Detailseite
Projekt Druckansicht

Neue Funktion der Cyclin-abhängigen Kinase 5 bei der Knochenintegrität - ein neues mögliches therapeutisches Zielmolekül zur Behandlung von Osteoporose.

Fachliche Zuordnung Orthopädie, Unfallchirurgie, rekonstruktive Chirurgie
Förderung Förderung von 2017 bis 2021
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 338458780
 
Erstellungsjahr 2021

Zusammenfassung der Projektergebnisse

We characterized in this project the role of CDK5 in bone integrity. Our initial hypothesis that inhibition of CDK5, e.g. by siRNA, Roscovitine or conditional deletion of CDK5 enhances bone formation was confirmed. Indeed Roscovitine treatment enhanced bone mass in total, and also the conditional knockout increased bone formation and cortical bone mass. However we could not confirm that inhibition of CDK5 in all considered bone disease models improves bone mass via elevation of bone formation. Glucocorticoid mediated bone loss was improved, but not via increase of bone formation, rather decrease of bone resorption. Ovariectomy mediated bone loss on the contrary was even worse after Roscovitine treatment concerning bone mass. By eliminating CDK5 in the osteoblast lineage we observed a strong decrease of trabecular bone mass, despite an increase in bone formation and decrease of osteoclast numbers. We could not solve yet this phenomenon, but discovered that inhibition of CDK5 strongly affects survival of osteocytes. We are currently exploiting, whether this explains the decrease trabecular bone mass observed in CDK5Runx2Cre mice. We bred and are currently investigating CDK5Dmp1Cre mice to see whether they phenocopy the CDK5Runx2Cre phenotype in part and thus the action of CDK5 in osteocytes is decisive for bone mass. We therefore omitted the initial planned studies targeting CDK5 at the skeletal stem cell level, since we currently do not believe that this influences the complex effects of CDK5 inhibition in vivo. Overall our work revealed a complex role of CDK5 in bone integrity, which should also being considered in patients receiving CDK5 inhibiting drugs for other disease conditions, such as leukemia. Therefore also complex effects on bone can be expected. We will continue our research on the role of CDK5 in bone with now the new hypothesis that CDK5 in osteocytes contributes to trabecular bone mass.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung