Project Details
Projekt Print View

Characterization of the plant mitochondrial twin arginine translocation pathway

Subject Area Plant Cell and Developmental Biology
Plant Physiology
Term from 2017 to 2021
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 350182520
 
Final Report Year 2022

Final Report Abstract

Twin arginine translocation (TAT) pathways have been extensively studied in bacteria and chloroplasts for their role in membrane translocation of folded proteins. However, an increasing number of organisms have been found to contain mitochondria-located TAT subunits, including plant mitochondria which contain TAT subunits, though in an unusual arrangement with only TatB and TatC subunits. To date, no confirmed function has been attributed to mitochondrial TAT pathways in any organism. Using a truncation mutant approach, we demonstrate that the plant mitochondrial TatB (MTTATB) is required for complex III biogenesis. More specifically, MTTATB performs at a late stage in complex III biogenesis conveying the translocation of the C-terminus of the Rieske FeS subunit back across the inner membrane. This work confirms that plant mitochondria retained a functional TAT pathway for the Rieske FeS translocation, most likely from the original mitochondrial ancestor. It is hypothesized that the original mitochondria contained a bacteria-derived TAT pathway required for at least the Rieske FeS translocation. In several eukaryotic lineages this mitochondrial TAT pathway was lost and replaced by BCS1. Interestingly, plant mitochondria appear to assemble complex III in the same subunit order as yeast and mammals but in contrast use bacteria-like assembly factors for this process.

Publications

 
 

Additional Information

Textvergrößerung und Kontrastanpassung