Detailseite
Projekt Druckansicht

Grundlagen für organische kolloidale Komposit-Nanopartikel anwendbar in der Optoelektronik; Studium der Morphologiebildung, Oberflächenbehandlung und Ladungsträgertransport

Fachliche Zuordnung Polymermaterialien
Herstellung und Eigenschaften von Funktionsmaterialien
Förderung Förderung von 2017 bis 2022
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 380524893
 
Erstellungsjahr 2022

Zusammenfassung der Projektergebnisse

In summary, we demonstrated that in-situ stopped flow UV-Vis spectroscopy is a powerful tool to provide new insights into solution-based nanocrystal formation events. It opened a pathway to observe the formation of Cs3Bi2Br9 perovskite NCs with an absorption maximum of 433 nm and a narrow FHWM down to 30 nm. The fast and accurate real-time tracking option enables the observation and prediction of a three-step nanocrystal formation process, which is completed in only a few hundred milliseconds (< 250 msec). Additional information could be obtained via in-situ stopped-flow small angle X- ray scattering, which revealed that in parallel to the formation of Cs3Bi2Br9 perovskite nuclei (< 97 msec) a hierarchical featureless network, with a characteristic size of rag ~ 30 nm has started to form within the first 150 msec. While this network undergoes a nanostructural transformation from single dispersed objects to a more complex network with a size of 45-55 nm, the Cs3Bi2Br9-perovskite nuclei evolve into highly crystalline nanoparticles within a time scale of 200-350 msec. However, within 500 msec, the formation of clusters with a characteristic size of rg,cluster = 1125 – 1825 nm is observed, indicating a strong tendency for agglomeration of the newly formed nanocrystals. Importantly, the outcome of both in-situ characterization methods are in great consistency. After this great success of applying the developed setup to perovskite NCs and integrating that to the synchrotron beam at DESY, we will extend our study to a broader range of perovskite NCs and investigating the key parameters letting to promote the NCs growth to high quality single crystals, which is an essential part of one of my next projects.

Projektbezogene Publikationen (Auswahl)

  • “Improved Charge Carrier Dynamics in Polymer/Perovskite Nanocrystal Based Hybrid Ternary Solar Cells”, Phys. Chem. Chem. Phys., 20, 23674, 2018
    R. Soltani, B. M.D. Puscher, A. A. Katbab, I. Levchuk, N. Kazerouni, N. Gasparini, N. Camaioni, A. Osvet, M. Batentschuk, R. Fink, D. M. Guldi, T. Ameri
    (Siehe online unter https://doi.org/10.1039/c8cp03743d)
  • “New synthesized ionic liquid functionalized graphene oxide: Synthesis, characterization and its nanocomposite with conjugated polymer as effective electrode materials in an energy storage device”, Electrochimica Acta, 292, 789, 2018
    F. Boorboor Ajdari, E. Kowsari, A. Ehsani, M. Schorowski, T. Ameri
    (Siehe online unter https://doi.org/10.1016/j.electacta.2018.09.177)
  • “Suppressing the Surface Recombination and Tuning the Open Circuit Voltage of Polymer/Fullerene Solar Cells by Implementing an Aggregative Ternary Compound”, ACS Appl. Mater. Interfaces, 10, 28803, 2018
    D. Galli, N. Gasparini, M. Forster, A. Eckert, C. Widling, M. S. Killian, A. Avgeropoulos, V. Gregoriou, U. Scherf, C. L. Chochos, C. J. Brabec, T. Ameri
    (Siehe online unter https://doi.org/10.1021/acsami.8b09174)
  • “Favorable mixing thermodynamics in ternary polymer blends for realizing high efficiency plastic solar cells”, Adv. Energy Mater., 9, 1803394, 2019
    N. Gasparini, S. Kahmann, M. Salvador, J. Dario Perea, A. Sperlich, A. Baumann, N. Li, S. Rechberger, E. Spiecker, V. Dyakonov, G. Portale, M. A. Loi, C. J. Brabec, T. Ameri
    (Siehe online unter https://doi.org/10.1002/aenm.201803394)
  • “Progress and Challenges in Perovskite Photovoltaics from Single- to Multi-Junction Cells”, Materials Today Energy, 12, 70, 2019
    N. Torabi, A. Behjat, Y. Zhou, P. Docampo, R. J. Stoddard, H. Hillhouse, T. Ameri
    (Siehe online unter https://doi.org/10.1016/j.mtener.2018.12.009)
  • “Unravelling the Complex Nanomorphology of Ternary Organic Solar Cells with Multimodal Analytical Transmission Electron Microscopy”, Sol. RRL, 2000114, 2020
    S. Rechberger, N. Gasparini, R. Singh, M. Kim, C. L. Chochos, V. G. Gregoriou, K. Cho, C. J. Brabec, T. Ameri, E. Spiecker
    (Siehe online unter https://doi.org/10.1002/solr.202000114)
  • 1,10-Phenanthroline as an efficient bifunctional passivating agent for MAPbI3 perovskite solar cells”, ACS Appl. Mater. Interfaces, 13, 32894, 2021
    A. Buyruk, D. Blätte, M. Günther, M. A. Scheel, N. F. Hartmann, M. Döblinger, A. Weis, A. Hartschuh, P. Müller‐Buschbaum, T. Bein, T. Ameri
    (Siehe online unter https://doi.org/10.1021/acsami.1c05055)
  • “Increasing Photostability of Inverted Nonfullerene Organic Solar Cells by using Fullerene Derivative Additives”, ACS Appl. Mater. Interfaces, 13, 16, 19072, 2021
    M. Günther, D. Blätte, A. Lena Oechsle, S. Sánchez Rivas, A. A. Yousefi Amin, P. Müller-Buschbaum, T. Bein, T. Ameri
    (Siehe online unter https://doi.org/10.1021/acsami.1c00700)
  • “Perovskite Nanocrystals: Synthesis, Stability, and Optoelectronic Applications”, Small Struct., 2, 2000124, 2021
    S. Wang, AA. Yousefi Amin, L. Wu, M. Cao, Q. Zhang, T. Ameri
    (Siehe online unter https://doi.org/10.1002/sstr.202000124)
  • “Hydrophobic Graphene Quantum Dots for Defect Passivation and Enhanced Moisture Stability of CH3NH3PbI3 Perovskite Solar Cells”, Solar RRL, 2200023, 2022
    E. Khorshidi, B. Rezaei, D. Blätte, A. Buyruk, M. A. Reus, J. Hanisch, B. Bӧller, P. Müller-Buschbaum, T. Ameri
    (Siehe online unter https://doi.org/10.1002/solr.202200023)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung