Detailseite
Projekt Druckansicht

Numerische Approximationen von hochdimensionalen nichtlinearen parabolischen partiellen Differentialgleichungen und von stochastischen Rückwärts-Differentialgleichungen

Fachliche Zuordnung Mathematik
Förderung Förderung von 2017 bis 2022
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 381158774
 
Erstellungsjahr 2023

Zusammenfassung der Projektergebnisse

High-dimensional forward-backward stochastic differential equations (FBSDEs) and high-dimensional secondorder parabolic partial differential equations (PDEs) are abundant in many important areas including financial engineering, economics, quantum mechanics, or statistical physics. We developed approximation methods which approximate solutions of FBSDEs with convergence rate nearly one-half under suitable assumptions. Our methods do not suffer from the curse of dimensionality and can thus also be applied if the forward process is very high-dimensional. These methods are the first and until now only implementable approximation methods for FBSDEs which have been mathematically demonstrated to overcome the curse for FBSDEs with general time horizon and general globally Lipschitz continuous terminal conditions and gradient-independent nonlinearities. Our approximation methods are based on multilevel Picard approximations – a nonlinear Monte Carlo method which we developed in the first project phase to approximate semilinear PDEs at fixed space-time points without suffering from the curse of dimensionality. In addition, our approximation methods are based on the multilevel approach of Stefan Heinrich. We show how to construct approximations of the full path of a sufficiently regular stochastic process given approximations at fixed time points without significantly reducing the order of convergence.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung