Project Details
Projekt Print View

Phonon engineering around a single photon emitter

Applicant Dr. Martin Esmann
Subject Area Experimental Condensed Matter Physics
Term from 2018 to 2020
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 401390650
 
Final Report Year 2021

Final Report Abstract

The central open research question that this project addressed, was whether concepts from cavity quantum electrodynamics (CQED) can be extended to the control of the phononic emission properties of a single semiconductor quantum dot (QD). The selected experimental scheme to investigate this question were semiconductor quantum dots deterministically coupled to GaAs/AlAs micropillar cavities, which simultaneously confine both light in the near-infrared range and phonons in the range of 20GHz (80µeV). Within this project, we significantly advanced the experimental control of phonon resonators colocalizing light and sound at 20GHz. We for the first time detected clear Brillouin scattering signatures from a few-micron sized micropillar resonator. We furthermore showed coherent phonon generation and detection with record-low excitation powers in the range of 1µW, which is well compatible with micropillar resonators hosting QDs for single-photon generation. As part of the project, we implemented an experimental setup for high-resolution QD spectroscopy to evidence phonon sidebands close to the zero phonon line. The setup was optimized to allow for different excitation schemes. We designed and fabricated samples with optimized deterministic coupling between a QD and both the confined acoustic and confined optical mode of a micropillar resonator. The exploration of the externally driven regime of a single-photon source subject to an externally applied coherent phonon pulse at 20GHz is currently underway. In addition, we developed a novel class of nanophononic resonators based on the engineering of topological invariants whose acoustic confinement properties are robust to certain types of spatial disorder.

Publications

  • Brillouin Scattering in Hybrid Optophononic Bragg Micropillar Resonators at 300 GHz. Optica 6, 854 (2019)
    M. Esmann, F. R. Lamberti, A. Harouri, L. Lanco, I. Sagnes, I. Favero, G. Aubin, C. Gomez-Carbonell, A. Lemaitre, O. Krebs, P. Senellart, N. D. Lanzillotti-Kimura
    (See online at https://doi.org/10.1364/OPTICA.6.000854)
  • Coherent generation and detection of acoustic phonons in topological nanocavities. APL Photonics 4, 030805 (2019)
    G. Arregui, O. Ortíz, M. Esmann, C.M. Sotomayor-Torres, C. Gomez-Carbonell, O. Mauguin, B. Perrin, A. Lemaître, P.D. García, and N.D. Lanzillotti-Kimura
    (See online at https://doi.org/10.1063/1.5082728)
  • Far-field radiation of three-dimensional plasmonic gold tapers near apices. ACS Photonics 6, 2509 (2019)
    S. Guo, N. Talebi, A. Campos, W. Sigle, M. Esmann, S.F. Becker, C. Lienau, M. Kociak, P. van Aken
    (See online at https://doi.org/10.1021/acsphotonics.9b00838)
  • Phonon engineering with superlattices: Generalized nanomechanical potentials. Phys. Rev. B 100, 085430 (2019)
    O. Ortíz, M. Esmann, N.D. Lanzillotti-Kimura
    (See online at https://doi.org/10.1103/PhysRevB.100.085430)
  • Vectorial near-field coupling. Nature Nanotechnology 14, 698 (2019)
    M. Esmann, S.F. Becker, J. Witt, J. Zhan, A. Chimeh, A. Korte, J. Zhong, R. Vogelgesang, G. Wittstock, C. Lienau
    (See online at https://doi.org/10.1038/s41565-019-0441-y)
  • Fiber-integrated microcavities for efficient generation of coherent acoustic phonons. Applied Physics Letters 117, 183102 (2020)
    O. Ortiz, F. Pastier, A. Rodriguez, Priya, A. Lemaitre, C. Gomez-Carbonell, I. Sagnes, A. Harouri, P. Senellart, V. Giesz, M. Esmann, N.D. Lanzillotti-Kimura
    (See online at https://doi.org/10.1063/5.0026959)
  • Mesoporous Thin Films for Acoustic Devices in the Gigahertz Range. Phys. Chem. C 124, 17165 (2020)
    N. Lopez Abdala, M. Esmann, M. C. Fuertes, P. C. Angelomé, O. Ortiz, A. Bruchhausen, H. Pastoriza, B. Perrin, G. J. A. A. Soler-Illia, N.D. Lanzillotti-Kimura
    (See online at https://doi.org/10.1021/acs.jpcc.0c05464)
  • Plasmonic nanofocusing spectral interferometry. Nanophotonics 9, 491 (2020)
    M. Esmann, A. Chimeh, A. Korte, J. Zhong, S. Stephan, J. Witt, G. Wittstock, N. Talebi, C. Lienau
    (See online at https://doi.org/10.1515/nanoph-2019-0397)
  • Sequential generation of linear cluster states from a single photon emitter. Nature Commun. 11, 5501 (2020)
    D. Istrati, Y. Pilnyak, J.C. Loredo, C. Antón, N. Somaschi, P. Hilaire, H. Ollivier, M. Esmann, L. Cohen, L. Vidro, C. Millet, A. Lemaître, I. Sagnes, A. Harouri, L. Lanco, P. Senellart, H.S. Eisenberg
    (See online at https://doi.org/10.1038/s41467-020-19341-4)
  • Fiber-based angular filtering for high-resolution Brillouin spectroscopy in the 20-300 GHz frequency range. Optics Express 29, 2637-2646 (2021)
    A. Rodriguez, P. Priya, O. Ortiz, P. Senellart, C. Gomez-Carbonell, A. Lemaître, M. Esmann, and N. D. Lanzillotti-Kimura
    (See online at https://doi.org/10.1364/OE.415228)
  • Topological optical and phononic interface mode by simultaneous band inversion. Optica 8, 598-605 (2021)
    O. Ortiz, P. Priya, A. Rodriguez, A. Lemaitre, M. Esmann, and N. D. Lanzillotti-Kimura
    (See online at https://doi.org/10.1364/OPTICA.411945)
 
 

Additional Information

Textvergrößerung und Kontrastanpassung