Detailseite
Projekt Druckansicht

Graduierte Tensorprodukte, Schur Positivität und Mock Theta Funktionen

Antragsteller Professor Dr. Deniz Kus
Fachliche Zuordnung Mathematik
Förderung Förderung von 2020 bis 2024
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 446246717
 
Erstellungsjahr 2023

Zusammenfassung der Projektergebnisse

This project investigates further the interplay between the fields of representation theory, combinatorics and number theory. The focus is on graded tensor products and their independence from the choice of parameters, the Schur positivity conjecture, the existence of excellent filtrations, the connection of graded multiplicities to mock-theta functions, the family of truncated representations and their realization as graded tensor products. Among the main achievements of the project are: • A presentation for a class of graded tensor products and the independence of this class from the choice of parameters, • Existence of excellent filtrations and a Pieri-type character decomposition, • Formulas for the graded decompositions of truncated representations in terms of zeros and poles of rational functions, • Recursion formulas and identities for the numerical multiplicities in excellent filtrations, • Proof of the Schur positivity conjecture for all rank 2 Lie algebras and the types A3 and A4 , and the parametrization of the Schur expansion as integer points in convex polytopes.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung