Detailseite
Projekt Druckansicht

Partielle Umkehrbarkeit der Dispersion in heterogenen porösen Medien

Fachliche Zuordnung Hydrogeologie, Hydrologie, Limnologie, Siedlungswasserwirtschaft, Wasserchemie, Integrierte Wasserressourcen-Bewirtschaftung
Strömungsmechanik
Förderung Förderung seit 2022
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 506393436
 
Beim Stofftransport in heterogenen porösen Medien unterscheidet sich die Spreizung einer Stoffwolke, die ihre zunehmende Ungleichförmigkeit misst, von der Mischung, die den Stoffaustausch der Wolke mit ihrer Umgebung quantifiziert. Der erste Prozess geht dem zweiten voraus, aber nur der zweite ermöglicht durchmischungskontrollierte Reaktionen. Es fehlen Theorien, die sowohl die großskalige nicht-Ficksche Spreizung als auch die Mischung gut beschreiben. Die bestehenden Theorien geben auch keine praktischen Hinweise, welche großskaligen konservativen Transportexperimente geeignet sind, um die Mischung zu quantifizieren. Das Projekt nützt aus, dass die kinematische Verformung von Wasserpaketen in heterogenen porösen Medien vollständig umkehrbar ist, wohingegen die diffusive Vermischung irreversibel ist. Die Wechselwirkung zwischen Deformation und kleinskaliger Mischung beim Stofftransport in solchen Medien bewirkt eine partielle Umkehrbarkeit der Spreizung: Nach einer Flussumkehr nimmt die räumliche Ausdehnung einer Stoffwolke ab, erreicht aber nicht den ursprünglichen Ausgangszustand. Das Projekt analysiert zweite Zentralmomente von Stoffwolken (, deren halbe zeitliche Veränderung Dispersionskoeffizienten definieren,) in heterogenen porösen Medien mit makroskopisch gleichförmiger Strömung, die umgekehrt wird. Der irreversible Anteil der Dispersion nach gleicher Zeit der Vorwärts- und Rückwärtsbewegung wird als Maß für die Mischung angenommen. In nicht-radialen “push-pull” Experimenten wird die Varianz der Durchbruchskurve der zurückkommenden Stoffwolke im Zugabe/Entnahme-Querschnitt betrachtet. Die Untersuchungen umfassen Particle-Tracking Random-Walk Simulationen in 3-D virtuellen Medien, stochastische Störungsmethoden für die theoretische Analyse räumlicher Momente, einen neuen korrelierten Continuous-Time Random-Walk Ansatz mit Erinnerung vorangegangener Schritte und zufälligem Austausch mit dem Mittelwert für die Analyse zeitlicher Momente sowie Tracerexperimente in einem ca. 2m × 1m quasi 2-D Versuchsbehälter mit Fluiden, die den gleichen Brechungsindex wie Glas haben, um die Detektion mittels Lichttransmission zu optimieren. Die Experimente erfassen auch die Durchbruchskurven der zurückkehrenden Tracer. Es wird vermutet, dass die lineare stochastische Theorie die Ensemble- und effektiven Momente bei kleiner Heterogenität gut vorhersagen. Die Erhöhung der inversen Péclet-Zahl, der Stärke der Heterogenität und der Anisotropie sollte den irreversiblen Anteil der Dispersion erhöhen. Es wird erwartet, dass die zweiten Zentralmomente nach Strömungsumkehr abnehmen und wieder zunehmen, bevor die Ausgangsposition der Wolke erreicht wird. Die Schrumpfungszeit und der reversible Anteil der Ensemble-Dispersion sollte mit der lokalen Péclet-Zahl skalieren. Das Projekt entwickelt neue theoretische und experimentelle Ansätze um Spreizung von Mischung in heterogenen porösen Medien zu unterscheiden, was das Verhalten reaktiver Stoffe kontrollieren kann.
DFG-Verfahren Sachbeihilfen
Internationaler Bezug Spanien
Kooperationspartner Professor Dr. Marco Dentz
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung