Project Details
Projekt Print View

1. Elliptische Kohomologie und konforme Feldtheorien 2. Konjugationen auf Mannigfaltigkeiten

Applicant Martin Olbermann
Subject Area Mathematics
Term from 2007 to 2010
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 50643043
 
Mein Forschungsvorhaben in algebraischer Topologie teilt sich auf in zwei Teilvorhaben:1. Elliptische Kohomologie ist die dritte einer Reihe von Kohomologietheorien, die mit gewöhnlicher Kohomologie und K-Theorie beginnt. Im Gegensatz zu diesen Theorien gibt es für elliptische Kohomologie bisher keine geometrische Formulierung. Das elliptische Geschlecht einer Mannigfaltigkeit wurde von Witten durch quantenfeldtheoretische Überlegungen in Beziehung zu 2-dimensionalen konformen Feldtheorien gesetzt. Nach Ideen von Segal gaben Teichner und Stolz die Definition eines elliptischen Objekts als eine 2-dimensionale supersymmetrische konforme Feldtheorie. Im Forschungsvorhaben soll es darum gehen, diese Feldtheorien besser zu verstehen und eine geometrische Definition der elliptischen Kohomologie durch solche Feldtheorien zu geben.2. Ein Konjugationsraum X ist ein gewisser topologischer Raum mit Involution, so dass die Fixpunktmenge der Involution isomorphe Z/2-Kohomologie zu X hat, mit dem einzigen Unterschied, dass alle Grade durch 2 geteilt werden müssen. Das Hauptbeispiel von Hausmann, Holm und Puppe zu ihrer Definition sind so genannte Konjugationszellkomplexe. In meinem Forschungsvorhaben, das meine Doktorarbeit fortsetzen soll, untersuche ich Fragen der Existenz / Nichtexistenz von Konjugationen auf Mannigfaltigkeiten.
DFG Programme Research Fellowships
International Connection USA
 
 

Additional Information

Textvergrößerung und Kontrastanpassung