Project Details
Projekt Print View

Memristively Programmable Transistors

Subject Area Electronic Semiconductors, Components and Circuits, Integrated Systems, Sensor Technology, Theoretical Electrical Engineering
Synthesis and Properties of Functional Materials
Term since 2023
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 521341740
 
The core-element of today’s dominating Flash-memory technology are floating-gate transistors. When designing the gate-dielectric of floating-gate transistors, a tradeoff between fast write-access and long state retention has to be made. We recently reported on a novel prototype of a memristively programmable transistor (memTR). The advantage of memTRs is that the logic state is encoded by nanoionic processes instead of classical charge storage as in case of floating-gate transistors. This offers the potential of fast write-access, long state retention and high programming endurance. A memTR is essentially an innovative combination of a transistor and a resistive switch (also known as memristive switch or memristor) integrated on the transistor’s gate contact. Resistive switches are low-power devices with short programming and write access times. Due to their analogue and non-linear behavior memristive devices are also used in neuromorphic applications. Based on our preliminary proof-of-concept results memTRs will be fabricated, characterized and optimized. We will make use of BEOL-compatible fabrication processes. We will characterize in detail the devices and the operation principle using advanced electrical, spectroscopic and microscopic techniques. These findings will be used for a fundamental understanding of the operation principle of memTRs and for further device optimization. Based on these results we will also experimentally analyze the application potential of memTRs for neuromorphics.
DFG Programme Research Grants
 
 

Additional Information

Textvergrößerung und Kontrastanpassung