Project Details
Projekt Print View

Klassifikation von Varietäten durch das Studium der zu ihnen assoziierten Modulräume stabiler Vektorbündel

Subject Area Mathematics
Term from 2000 to 2002
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 5271016
 
Ist X eine projektive Varietät, so haben wir eine Abbildung in eine abelsche Varietät alb(X) : X > Alb(X), wobei Alb(X) die zu X assoziierte Albanese Varietät ist. Der Albanese Morphismus alb(X) enthält viele geometrische Informationen über X. Im Falle Riemannscher Flächen ist X bereits durch Alb(X) und seinen Theta-Divisor bestimmt.Eine mögliche Beschreibung des Albanese Morphismus ist folgende: Wir betrachten den Picardtorus Pic°(X) und auf dem Kreuzprodukt X x Pic°(X) ein Poincaré Bündel L. Üblicherweise sehen wir L als Famile von Geradenbündeln auf X an, die durch Pic°(X) parametrisiert wird. Betrachten wir L als Familie von Geradenbündeln auf Pic°(X), die durch X parametrisiert werden, so erhalten wir eine Abbildung von X in Pic°(Pic°(X)) Die so konstruierte Abbildung ist gerade der Albanese Morphismus.Ersetzen wir in obiger Konstruktion Pic°(X) durch den Modulraum Mr(X) von Vektorbündeln auf X mit vorgegebenen Invarianten, so erhalten wir in Analogie eine Abbildung albr(X) : X > Mr(Mr(X)) welche wir als Verallgemeinerungen des Albanese Morphismus betrachten können. Dieser Morphismus und seine Eigenschaften sollen in der Habilitationsschrift studiert werden.
DFG Programme Research Fellowships
 
 

Additional Information

Textvergrößerung und Kontrastanpassung