Project Details
Projekt Print View

New transgenic mouse models to study the role of astrocytes in synaptogenesis in vivo

Subject Area Molecular Biology and Physiology of Neurons and Glial Cells
Term from 2004 to 2009
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 5430051
 
Final Report Year 2011

Final Report Abstract

A major question in neuroscience is whether synaptic connections develop and function autonomously or whether they require the help of glial cells, namely synapse-surrounding astrocytes. To address this topic in vivo, we proposed to generate new transgenic mouse lines that allow for conditional gene ablation in astrocytes using site-specific recombination (Cre/loxP system) and bacterial artificial chromosome-based transgenesis. We selected four distinct astrocyte-specific promoters to control expression of an inducible version of Cre recombinase (CreERT2) and generated a total of 15 mouse lines. Their characterization revealed that two of these lines (Glast-CreERT2 and Cx30-CreERT2) allow for gene manipulation in partially overlapping populations of astroglial cells in the central nervous system and in the retina. Importantly, our lines also allow to modify precursor cells in the developing and adult brain. Our transgenic mice have become a widely used tool to study precursor cells and astrocytes in vivo.

Publications

  • Transgenic mice for conditional gene manipulation in astroglial cells. Glia, Vol. 55. 2007, Issue 15, pp. 1565-1576.
    Slezak M., Goritz C., Niemiec A., Frisen J., Chambon P., Metzger D., Pfrieger F.W.
    (See online at https://dx.doi.org/10.1002/glia.20570)
  • Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell, Vol. 7. 2010, Issue 4, pp. 470–482.
    Barnabé-Heider F., Göritz C., Sabelström H., Takebayashi H., Pfrieger F.W., Meletis K., Frisén J.
    (See online at https://dx.doi.org/10.1016/j.stem.2010.07.014)
  • RBPJkappa-dependent signalling is essential for longterm maintenance of neural stem cells in the adult hippocampus. Journal of Neuroscience, Vol. 30. 2010, Issue 41, pp. 13794-13807.
    Ehm O., Göritz C., Covic M., Schäffner I., Schwarz T.J., Karaca E., Kempkes B., Kremmer E., Pfrieger F.W., Espinosa L., Bigas A., Giachino C., Taylor V., Frisén J., Lie C.D.
    (See online at https://dx.doi.org/10.1523/JNEUROSCI.1567-10.2010)
  • Role of astroglial connexin30 in hippocampal gap junction coupling. Glia, Vol. 59. 2011, Issue 3, pp. 511–519.
    Gosejacob D., Dublin P., Bedner P., Huttmann K., Zhang J., Tress O., Willecke K., Pfrieger F., Steinhauser C., Theis M.
    (See online at https://dx.doi.org/10.1002/glia.21120)
  • Relevance of exocytotic glutamate release from retinal glia. Neuron, Vol. 74. 2012, Issue 3, pp. 504–516.
    Slezak M., Pfrieger F. W. et al.
    (See online at https://doi.org/10.1016/j.neuron.2012.03.027)
  • CXCR4 prevents dispersion of granule neuron precursors in the adult dentate gyrus. Hippocampus, Vol. 23. 2013, Issue 12, pp. 1345–1358.
    Schultheiß C., Abe P., Hoffmann F., Mueller W., Kreuder A.E., Schütz D., Haege S., Redecker C., Keiner S., Kannan S., Claasen J.H., Pfrieger F.W., Stumm R.
    (See online at https://doi.org/10.1002/hipo.22180)
  • Calcium dynamics in astrocyte processes during neurovascular coupling. Nature Neuroscience, Vol. 18. 2015, pp. 210–218.
    Otsu Y, Couchman K, Lyons DG, Collot M, Agarwal A, Mallet J, Pfrieger FW, Bergles DE, Charpak S
    (See online at https://doi.org/10.1038/nn.3906)
 
 

Additional Information

Textvergrößerung und Kontrastanpassung