Project Details
Initiation of Jurassic Ferrar Group Magmatism in North Victoria Land, Antarctica: - stratigraphic age, composition and depositional environment of volcaniclastic and epiclastic sediments of the Exposure Hill and Section Peak Formation, Beacon Supergroup
Applicants
Professor Dr. Reinhard Gaupp; Professor Dr. Jörg W. Schneider; Professor Dr. Lothar Viereck
Subject Area
Oceanography
Term
from 2005 to 2015
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 5456743
The project focusses on the petrological, palaeozoological, palaeobotanical and sedimentological investigation of epi- and volcaniclastic rocks of Late Triassic to Lower Jurassic age enclosed between the crystalline basement and the 183 Ma old Kirkpatrick Lava Flows of the Ferrar Group Flood Basalt Province in North Victoria Land, Antarctica. The results summarized in the second progress report (attached) indicate several new findings with respect to lithologic units, stratigraphic order, biostratigraphic markers, and magma-wet sediment interaction. Sedimentological and petrographic studies shall be continued to characterize the vertical and lateral facies variations of the epi- and volcaniclastic units and to document the provenance of the clasts as well as the spatial and temporal development of the depositional environments. The paleontological data may allow to address a biostratigraphic age to the sediment formations identified. Biofacies analyses of floras and faunas together with lithofacies analysis of fossiliferous sequences will provide the data for the interpretation of depositional environments. Petrographic and chemical investigations as well as determinations of radiometric ages especially of the rhyolitic tuffs of the newly identified Shafer Peak Formation will allow to clarify the petrogenetic relationship between the various explosive and effusive igneous units.
DFG Programme
Infrastructure Priority Programmes
Subproject of
SPP 1158:
Infrastructure area - Antarctic Research with Comparative Investigations in Arctic Sea Ice Areas
Participating Person
Professor Dr. Hans Kerp