Detailseite
Projekt Druckansicht

Zufällige Wachstumsprozesse und stark korrelierte Systeme (B01)

Fachliche Zuordnung Mathematik
Förderung Förderung seit 2025
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 539309657
 
Das Projekt befasst sich mit stochastischen Wachstumsmodellen in der KardarParisi-Zhang-Universalitätsklasse und eng verwandten Modellen wie zum Beispiel zufälligen Pflasterungen. Dabei liegt der Schwerpunkt auf universellen Skalierungslimiten für große Zeiten, von denen viele auch Grenzverteilungen für Eigenwerte von Zufallsmatrizen beschreiben. Ziel dieses Projekts ist die Beschreibung der Struktur von Raum-Zeit-Korrelationen für Grenzflächen, die zur KPZ-Universalitätsklasse gehören, im Fall generischer Rand- und Anfangswerte, sowie für vektorwertige Höhenfunktionen.
DFG-Verfahren Sonderforschungsbereiche
Teilprojektleiter Professor Dr. Patrik L. Ferrari, seit 7/2025
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung