Detailseite
Projekt Druckansicht

Inverse Probleme für genuin nichtlokale elliptische Operatoren: Eindeutigkeit, Stabilität und Rekonstruktion (C01)

Fachliche Zuordnung Mathematik
Förderung Förderung seit 2025
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 539309657
 
Das zentrale Ziel dieses Projekts ist die Erforschung von Nichtlokalität als ein neuer Blickwinkel auf und Zugang zur Analyse von fundamentalen Fragen zu klassischen elliptischen inversen Problemen wie dem Calderón Problem. Dazu verfolgen wir ein dreischrittiges Vorgehen: Erstens planen wir das lokale und nichtlokale Calderón Problem rigoros in Beziehung zueinander zu setzen. Zweitens werden wir das fraktionelle Analogon der Brown-Uhlmann Vermutung zu kritischen Übergängen zwischen Eindeutigkeit und Nichteindeutigkeit untersuchen. Drittens streben wir an, die Klasse von Operatoren über den Modellfall des fraktionellen Laplace zu erweitern und Klassen von, genuin nichtlokalen elliptischen Operatoren‘ zu identifizieren.
DFG-Verfahren Sonderforschungsbereiche
Teilprojektleiterin Professorin Dr. Angkana Rüland, seit 7/2025
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung