Detailseite
Projekt Druckansicht

Extended Fluctuation-Dissipation Theorem for Driven Colloidal Suspensions

Fachliche Zuordnung Statistische Physik, Nichtlineare Dynamik, Komplexe Systeme, Weiche und fluide Materie, Biologische Physik
Förderung Förderung von 2008 bis 2018
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 60433802
 
Erstellungsjahr 2018

Zusammenfassung der Projektergebnisse

In the second funding period, we have studied the response of a colloidal probe particle to an external force. Such active microrheology has become a valuable tool to probe biological materials. In the analytic approach, we consider the interactions of the probe with “bath” particles but neglect interactions between these bath particles as is appropriate for soft materials (e.g., polymer suspensions). We corroborate results from solving the resulting partial differential equation with direct numerical simulations. Our central result is the emergence of force thinning, a novel mechanism in which a strongly driven, attractive probe discontinuously reduces the viscosity of the medium. In a second step, we have considered the influence of a second, quiescent probe on the driven probe. Moreover, we have investigated related problems in stochastic thermodynamics: the effect of coarsegraining a density field on the fluctuation theorem and the extraction of work from a driven bath, which have led to further publications.

Projektbezogene Publikationen (Auswahl)

  • Effective confinement as origin of the equivalence of kinetic temperature and fluctuationdissipation ratio in a dense shear-driven suspension. Phys. Rev. E 85, 021103 (2012)
    B. Lander, U. Seifert, and T. Speck
    (Siehe online unter https://doi.org/10.1103/PhysRevE.85.021103)
  • Crystallization in a sheared colloidal suspension. J. Chem. Phys. 138, 224907 (2013)
    B. Lander, U. Seifert, and T. Speck
    (Siehe online unter https://doi.org/10.1063/1.4808354)
  • Stochastic thermodynamics of fluctuating density fields: Non-equilibrium free energy differences under coarse-graining. J. Chem. Phys. 139, 204109 (2013)
    T. Leonard, B. Lander, U. Seifert, and T. Speck
    (Siehe online unter https://doi.org/10.1063/1.4833136)
  • Discontinuous thinning in active microrheology of soft complex matter. Phys. Rev. E 94, 062610 (2016)
    R. Wulfert, U. Seifert, and T. Speck
    (Siehe online unter https://doi.org/10.1103/PhysRevE.94.062610)
  • Driven Brownian particle as a paradigm for a nonequilibrium heat bath: Effective temperature and cyclic work extraction. Phys. Rev. E 95, 050103 (2017)
    R. Wulfert, M. Oechsle, T. Speck, and U. Seifert
    (Siehe online unter https://doi.org/10.1103/PhysRevE.95.050103)
  • Nonequilibrium depletion interactions in active microrheology. Soft Matter 13, 9093 (2017)
    R. Wulfert, U. Seifert, and T. Speck
    (Siehe online unter https://doi.org/10.1039/c7sm01737e)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung