Project Details
Projekt Print View

Kondo effect in charge transfer complexes

Subject Area Experimental Condensed Matter Physics
Term from 2008 to 2015
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 68277319
 
Final Report Year 2015

Final Report Abstract

The goal of the project was a fundamental understanding of charge transfer processes and the related Kondo effect on metal surfaces. Employing low-temperature scanning tunneling microscopy and spectroscopy, we investigated self-assembled monolayers of different charge transfer systems. We showed that the charge state is not only determined by the electron affinity and the ionization potential of the constituents, but also crucially depends on the atomic-scale details of the adsorption configuration. Particularly interesting are systems in which the charge state can be controlled by the electric field in the tunneling junction. This resembles the situation of a gate electrode in three-terminal devices. In other systems, we found that instabilities in the adsorption configuration can be switched by a combination of tunneling electrons and electric field. Furthermore, we created highly ordered networks consisting of transition metal atoms and organic linkers. The structure of these networks was determined by scanning tunneling microscopy. In combination with x-ray circular magnetic dichroism measurements, we could identify a magnetically coupled ground state, where the spin interaction probably proceeds via the organic linker. Further experiments are planned to investigate the tunability of the interaction strength and the competition of possible coupling mechanisms. These experiments were carried out in cooperation with group of Wolfgang Kuch from Freie Universität Berlin.

Publications

 
 

Additional Information

Textvergrößerung und Kontrastanpassung