Project Details
Projekt Print View

Relevanzlernen für temporale neuronale Karten / Relevance Learning for temporal Neural Maps

Subject Area Theoretical Computer Science
Term from 2008 to 2013
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 73745536
 
Ein überwältigender Anteil der Daten, mit denen Ingenieure und Wissenschaftler gegenwärtig umgehen, besitzen einen zeitlichen Kontext, und das schiere Volumen verhindert, dass mehr als ein kleiner Bruchteil je direkt betrachtet werden kann. Daher werden Techniken, diese Daten automatisch zu explorieren und visualisieren, dringend benötigt. Relevante hochsensitive Technologien der Chemie, Medizin und Biologie wie etwa die Massenspektrometrie führen zu extrem hochdimensionalen und oft nichtlinearen Zeitreihen. Diese sind gleichzeitig extrem kurz, da für die Datengewinnung menschliche Interaktion wie etwa die Entnahme von Blutproben nötig ist. Heutige Verfahren der Dateninspektion, auf denen die aktuellen Toolboxen der Anwender aufsetzen, sind nur sehr eingeschränkt fähig, diese extrem hochdimensionalen und sehr kurzen Daten adäquat zu verarbeiten, und es besteht der Bedarf für neuartige Data Mining Tools um mit derartigen Situationen robust umzugehen. Ziel dieses Vorhabens ist die Entwicklung von Data Mining Methoden in unüberwachten und partiell überwachten Szenarien für kurze hochdimensionale temporale Sequenzen, die Relevanzbestimmung, Visualisierung und Inspektion von Daten etwa der Biomedizin erlauben. Die Modelle sollen auf neuronalen Karten und Erweiterungen basieren, die mit den Prinzipien der lernenden Metriken und rekurrenter Verarbeitung zeitlicher Daten kombiniert werden.
DFG Programme Research Grants
 
 

Additional Information

Textvergrößerung und Kontrastanpassung